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INTRODUCTION

Given a finite, connected, (unoriented) graph G (or a multigraph where edges
may have positive integral multiplicities), one may consider maximal trees that are
present as subgraphs of G. If the edges of G are suitably labeled, by distinct letters
or colors, such trees can similarly be distinguished from each other. The famous
formula of Cayley asserts that if G is the complete graph on n vertices, then the
number of such distinct trees is n? 2.

The vertex-vertex incidence matrix M of G, defined as the diagonal vertex degree
matrix minus the adjacency matrix, yields a method for enumerating the “span-
ning” (all vertices of G are included) tree subgraphs of G. One deletes the last, or
any other, row and column of M, and takes the determinant of the resulting matrix
M. The fact that this calculation enumerates the spanning trees follows from ex-
pressing M as the product of the vertex-edge incidence matrix B and its transpose
using the Cauchy-Binet Theorem, [Sw&Th] or [Ko]. This method is based on the
vertices and their adjacency. We argue that a formulation utilizing cycles is more
natural. A set of cycles defines an intersection form, given roughly by counting the
common edges of two cycles with sign.

Consider an edge e in G whose removal disconnects G. Then e belongs to any
spanning tree of G. Hence if the ends of e are identified and e removed, the resulting
multigraph G’ has equally many spanning trees. But it is also clear that e cannot
belong to any “geometric cycle” (precise definitions below). Continuing in this
way we arrive at a multigraph H, with as many maximal trees as G which has no
disconnecting edges, and each edge belongs to a cycle. Hence one might expect
that a way to count spanning trees in terms of a basis of cycles could be found.

The Theorem that confirms this expectation is given in Section 1. It asserts
that the number of labeled spanning trees is equal to the determinant of a cycle-
cycle incidence matrix (intersection form). The set of cycles selected must form an
“integral basis” of the algebraic cycles, but in particular, a basis set of geometric
cycles will serve. Notice that is is not necessary in this case to delete any row and
column.

Special thanks to Vannessa Job for stimulating discussion
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For certain graphs the cycle methodology requires less computation. Also, con-
sider the case of the graph (one-skeleton) of a polyhedron. If the 2-dimensional
boundary surface of the polyhedron is topologically a sphere, say that the graph
is “spherical”. A graph is spherical if and only if it is planar. Equivalently, the
polyhedron should be realizable up to “piecewise-linear equivalence” as a convez
polyhedron P in 3-space. Then P has a natural dual P*, where faces go to vertices,
edges go to (orthogonal) edges, and vertices go to faces.

Theorem 0. The spanning trees of a convex polyhedron P are equinumerous with
those of P*.

For instance, among the Platonic solids, the icosahedron and dodecahedron
both contain 5,184,000 distinct labeled maximal trees as subgraphs of their one-
skeletons.

As further examples we consider the generalization to multigraphs of graphs
studied by [Vo&Wa]. These multigraphs K have n vertices with the group of
integers modulo n acting freely as a group or graph isomorphisms for K. Using the
standard vertex method one obtains algorithms for the number of spanning trees,
but these involve arithmetic with irrational numbers. Using the cycle-based method
one can often obtain another algorithm where only integral polynomial calculations
enter in.

In particular, the question of how to compute the Fibonacci numbers is relevant
to this discussion. The defining algorithm

Fo=F, 1+ F,_»

involves only integral calculation, but requires finding the entire sequence up to n
to get Fj,. The Binet formula, on the other hand, is “closed form” but in principle
requires the calculation of an indefinite number of digits of v/5.

In Section 2 a basis of cycles is constructed for connected n-rotational graphs.
This basis seems to be natural with respect to the rotational property, and we apply
it to several special cases, treated in Section 3. The first case gives a derivation
of the formula for Q(G,,), where G, is the (1,2) graph [Kl&Go], which uses only
integer algebra. Kleitman and Golden’s derivation involves embedding the graph
into a continuum, and Vohra and Washington’s method involves essential use of
algebraic numbers. This comparison is carried out for the graph G,(1,3) as well.
Here Vohra and Washington’s method leads to a sequence of numbers that are
integers since they are 1) algebraic integers, 2) invariant under a Galois action over
@Q. By our dual approach, on the other hand, this sequence is seen to be “integrally
computable” (recursively via integral polynomials). Some provisional definitions of
these terms are set forth.

These examples hardly comprise a theory, but raise questions such as, if a se-
quence of integers is algebraically computable, under what conditions is it integrally
computable? Certain integers arise in the calculation of QGp(1,3) for which it is
not clear that they are integrally computable.

SEcTION 1. A DuaL CONSTRUCTION FOR MAXIMAL TREE SUBGRAPHS

A multigraph G consists of a set V| called vertices, as set E, called edges, and a
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mapping g which assigns to each edge e one unordered pair of distinct vertices,

g(e) = {v,w}

. Here the vertices v, w are said to constitute the ends of the edge e, or collectively,
the border. We say that v and w are incident to e, and adjacent to each other. A
path in G consists of an alternating sequence of distinct vertices and distinct edges

p= (’Uo, €0, V1, .-, 'Uk—lyek—lyvk)a

where g(e;) = {vi, vig1}.

Definition 1. A multigraph G is connected if for any two distinct vertices v, w
there is a path as above with vy = v, vy = w.

A geometric cycle, or circuit consists of a path together with an edge e whose
ends are the initial and final vertex of the path. Hence g(ex) = {vo,vi}. The
definition differs slightly from that in [B-B], since we are dealing with the more
general multigraphs.

Definition 2. An orientation for an edge e consists of a choice of one of its ends,
called the head vertex head(e) € g(e). An orientation for G is a mapping head :
V — FE giving an orientation on each vertex. The remaining vertex for a given
orientation is called tail(e).

Let us endow G with a fixed orientation head once and for all. We will often
write for an edge e, e = (v, w), where v = tail(e), w = head(e). Then let Cy(G) be
the vector space (free ) —module) generated by the set of vertices V', known as the
zero-chains. Similarly let C1(G) be the one-chains, freely generated over Q by the
set of edges E. The orientation leads to a homomorphism (linear mapping)

a: Cl(G) — Co(G)

given by d(e) = head(e) — tail(e) on generators, and extended by linearity.
Let B be the n x m vertex-edge incidence matrix of a connected multigraph

G. Here G has the n vertices {v1,...,v,}, and m edges (each with multiplicity 1)
{e1,...,em}. Then

1, iftail(e;) = v
Bij = —1, if head(ej) = v
0 otherwise.

3

See p. 38 in [B-B].
If D is the n x n diagonal degree matrix, and A is the n x n vertex adjacency
matrix defined by

A;; = multiplicity of the edge with border {v;, v;},
if this edge exists, and 0 otherwise. In other words, A;; gives the number of 1 <

k < m such that g(e) = {v;, v; }. Furthermore, D;; = > _, A;;. Let superscript ¢
denote matrix transpose.

n
ji=1
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Proposition 1. The matrices BB! and D — A are equal.
This is Theorem 6, p. 38, of [B-B]. Letting B be the result of deleting a row
(say the last) from B, we arrive at

BB'=M

3

where M was given in the Introduction.

Next choose a subset P of the n columns of B and let Bp be the square matrix
obtained by restricting to these columns. Similarly, B}, is the square matrix formed
from the corresponding rows of B'. Then the Cauchy-Binet theorem [Sw&Th)]
asserts that

Z det Bp deté}; = det M.
P

But it is well-known and not difficult to see that if the edges belonging to the
columns P give rise to some cycle, the detBp = 0, and if not (in which case they
form a spanning tree for G), one has detBp = +1. hence detM gives precisely
Q(G), the number of spanning trees.

Now a geometric cycle gives a 1-chain via the fixed orientation. If the cycle ¢
has edges €q, ..., € be the edges of ¢, where

60506151 e ~€l€l

(with &; is the j-th vertex) is the natural ordering of the geometric cycle. Then
define ¢ € C1(G) as é = E;:o frex where

f _{—1—1, if head(er) = &
P -1, if tail(er) = &

Then it is easy to see (or refer to a text on simplicial homology theory such as
[Gr]) that
dc = 0.

A 1-chain o satisfying doc = 0 is called an algebraic cycle; these cycles form a
submodule Z(G) C C1(G). One may show as in Theorem 5, p. 36, of [B-B], that
the set of geometric cycles C = {c¢} generate the entire submodule Z(G).

Next we adopt notation to allow consideration of integral chains and cycles.
Write Co(G)z for the module of algebraic 1-chains with integral coefficients, simi-
larly C1(G)z, and Z(G)z (the integral cycles) to be Z(G) (N C1(G)z.

Definition 3. Let U C Z(G)z be a finite subset. Then if any algebraic cycle
o € Z(G)z can be written

o= Zguu with ¢, € 7Z,

we say that U is an integral spanning set for the integral cycles.
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Definition 4. If U is an integral spanning set for the integral cycles of G and is
Z-linearly independent, we say that U is an integral basis for the integral cycles.

Observation. From Lemma 1 below it follows immediately that, for a connected
multigraph, if a basis U for cycles consists of geometric cycles, it is an integral basis
of Z-cycles.

In particular, if the set U is linearly independent and consists of m — n + 1
elements (which are geometric cycles), then it is an integral basis.

Lemma 1. Let W be a basis (in the vector space sense) over QQ of the cycles Z(G)
for a connected multigraph G. Then if, writing an arbitrary element w; of W in
terms of edges

w; = Z/\ijej, with /\ij ==+1 or 0,
J

then each integral (algebraic) cycle z of G can be expressed as a linear combination
z= Z Kiw;, with k; € 7.

That is, W is an integral basis of Z-cycles.

Proof. Given z = 3 e, & € Z, ¢; € E(G), we have to show that z is an integral
linear combination of the finite set W = {w;}. If G has no integral cycles, hence
is a tree, the conclusion is trivial. Suppose that for some w; there is an edge ¢,
that occurs only in wy. That is, A;, = £1, but A;, = 0 for all g # f. Consider the
multigraph G, = G — {e,}, which is still a connected multigraph since e, occurs
non-trivially in a cycle of G. The set of cycles Wy = W — {wy} is still Q-linearly
(and Z-linearly) independent and has (m — 1) — n + 1 elements, and hence is a
@-basis for the cycles of G,.

Now write z = ) viw;, 7; € Q. If 4 = 0, we may consider z to be a cycle in
the multigraph G,, so by an induction on the number of edges we obtain

z= E Kiw;, k; € Z,

as was to be proved.

Alternatively if 75 # 0, then 2z’ = z — y;w; may be regarded as a cycle in G,.
From the edge description of z we get

(€p =71 Asp) = 0.

Since §, € Z and Ay, = £1, we have vy € Z. But 2z’ has by an induction hypoth-
esis an integral expression in the basis W; and hence z = 2’ 4+ y;wy is integrally
expressible over W as well, which is what had to be proved.

In general there may not be an edge e, that occurs only in one cycle w;. Suppose
anyway that Ay, = £1, and suppose that another w; € W contains e, non-trivially,
ie., Agp # 0. Then let Wy = wp — AgpAj,wy. Then @y is an integral cycle that
does not contain e, non-trivially. Continuing in this way with all wy € W, k # f
and replacing them with w; as necessary we obtain a new set of cycles W. Since
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Wy, = wg £ wy, a cycle z is expressible by elements of W with integer coefficients if
and only if it is integrally expressible by VT/, and W is still a basis of Q-cycles. But
W has wy as an element and e, satisfies the “exclusive” condition used earlier in
the proof, for which case the Lemma was verified. Hence the Lemma holds in all
cases.

Next suppose that U is given as an integral basis of integral cycles for a connected
multigraph G. If U = {w;}, i=1,...,r,7=m—n+1, we have

u; = Zfijej: fij € Z.

ji=1
Theorem 1. Let F = [fi;] as above. Then if R = FF*, we have Q(G) = detR.

Proof. Recall the vertex-edge incidence matrix B. Selecting a set of n—1 edges S of
G gives n — 1 columns of B, and an n — 1 X n — 1 submatrix Bg of B, upon deleting
a fixed vertex (row). If T'= E'\ S is the complementary set of edges, one similarly
obtains an m — n+ 1 x m — n + 1 submatrix of F' by restricting to those columns,
which is denoted Fp. We know that detBS = #1 or 0 depending on whether the
edges of S form a tree or do not.

We must show

1.1 |detBs| =1 = |detFp| = 1.
1.2 detBg = 0 = det Fip = 0.

For (1.1), suppose that detBg = 1, and S gives a tree. Consider an edge t € T' =
E = S. Then the subgraph whose edge set is S U {t} has a unique algebraic cycle
z; such that z; -t = +1. Here we use the natural inner product

Cl(G) X Cl(G) — Q,

in other words, the t term of z; has coefficient equal to 1. Furthermore, for any
t' #tin T, we also have z; -/ = 0. The uniqueness of this cycle follows since if
there were two such cycles z; and z3, both z; — ¢ and 23 — t could be realized as
distinct paths from head(t) to tail(¢z). But in the tree S, only one such path can
exist.

Thus, ranging over t € T', there is a set of cycles W = {2}, z: € Z(G)z. The
set W is linearly independent, since if ) Ayz; = 0, then t; -3 Az = A; = 0 for
arbitrary j. By Theorem 5 of [B-B], W is also a spanning set for cycles over Q).
Hence by Lemma 1 above, W is an integral basis of cycles.

Now suppose that the given integral basis U is the same (as a set) as W. Then
the matrix Fr has a single non-zero entry +1 in the row corresponding to u; = 2, .
That entry is exactly in the column corresponding to ¢;. Similarly, each row and
column has precisely one non-zero entry equal to +1, so Fp is a permutation matrix
with determinant equal to %1.

If the given basis U is different from W, then since both are integral bases of a
Z-module, there is an r X r unimodular integral matrix L such that

U=LW,
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w1 Ui

where W = ,and U = | . | are treated as column vectors. In the con-

Wy Ur
struction of Fp, if we change the basis, we get

F(U)r = LF(W)r,

which since detL = +1, equals £1 as was to be proved. This finishes (1.1).

To establish (1.2), we suppose that detBs = 0, so the set of n — 1 edges S
contains a geometric cycle c¢. Let z. be the corresponding algebraic cycle. But for
any t € T, clearly

(1.3) Ze 1 =0,

Since U is a basis, let
-
Ze = Emui, n; € L.
i

But

wi= Y fiiti + > fijs;.

tjET SjES

Then by (1.3), zc -ty = >_mifix = 0 for each k € T. Since z. was a non-trivial
cycle, the row vector n = [;] is not identically zero. Hence the matrix [fix], 1=
1,...,r, 1t €T has a vanishing determinant. But this is exactly the matrix Frp, so
we have proved (1.2).

The Theorem follows since clearly now

BsBY = PpF}
and detR = ) det P’y - det '}, by the Cauchy-Binet theorem, so we obtain

QG) = detM = Zdetésdetég.
5

This completes the proof of the Theorem.

The following discussion will culminate in a proof of Theorem 0. Let P be a
convex polyhedron embedded in 3-space. Associated with P is a collection of faces
F={fi},,i=1,...,np,edges E ={¢;},i=1,...,ng, and vertices V = {v;},i =
1,...,ny. Let P; be the graph consisting of the 1-skeleton of P with edge-vertex
incidences induced from P. The border (geometric boundary) of a face f consists of
a geometric cycle ¢y of this graph P;. Now since the 2-complex P is the geometric
boundary of a compact 3-complex, it has a “natural” orientation given on faces by
the right-hand rule (the thumb should point outward). An orientation in the graph
sense may be chosen arbitrarily for P, but we now regard this orientation as fixed.

With respect to this orientation, the geometric cycle ¢y gives rise to an algebraic
cycle z; in which each edge occurs with multiplicity 41, —1 or 0. The collection
C = {cy}, where f ranges over all distinct faces, has the following property.



8 JON A. SJOGREN

Claim. Given any proper subset D C C, there exists an edge e € E(Py) such that
there is exactly one geometric cycle d € D that contains e non-trivially as an edge.

Proof sketch. This result was clear to the ancients. It is not necessary that P be
convex for the Claim to hold, only connected as a simplicial complex. Now each edge
e of D occurs at most twice (in two elements d € D). This is part of the “manifold
property” for a polyhedron. Let Fp be the set of faces corresponding to D. The
faces freely generate a Q-module of algebraic 2-chains denoted Cy(P). Taking the
given orientations (with the simplicial boundary mapping 8 : C2(P) — C1(P)) we

get
0y f=> z

f€FD deD

But if all the edges in D are paired, then by the definition of the boundary of a 2-
chain (and using the “outward” positive orientation), they are paired with opposite
signs in C1(G). Hence 3Zf€FD f = 0, and by simplicial topology Fp must be
the 2-skeleton of a polyhedron in 3-space. Similarly F'\ Fp is the two-skeleton
of another polyhedron. But these two polyhedra cannot have any intersection in
3-space, since this would violate the manifold property of a polyhedron and its
boundary. And if they do not intersect, the polyhedron P could not be connected,
contradicting the meaning of “polyhedron”.

So we have established the existence of an edge e for every subset D C C with the
above exclusive property. From this follows immediately that the set of algebraic
cycles

Wp={z}, fe€lDp

is linearly independent over Q).

Choose a face fo and let Fo = F'\ {fo} and Do be such that Fo = Fp,, i.e.,
Do = C\{cpo}. Then Wp, has np — 1 linearly independent elements. By Euler’s
formula since P is convex,

ng —ng +ny = 2.

Thus ng —ny +1 =np — 1, so Wp, is a spanning set for cycles of P; over (9, and
by Lemma 1 is also an integral basis for cycles. Let ¢ and j range over the set Fp,
suitably ordered. The inner product w; - w; on 1-chains is generated by the formula
€; - €j = 0;;, which is extended by bilinearity. Then by Theorem 1 the intersection
form matrix,

Rij = (wi - wy)

has determinant equal to Q(P;).

Next consider the dual polyhedron P*. We also know that Q(P*) = detM(P*)
where M is the vertex incidence matrix, less a row and (same) column. Let v}, be
the vertex of P* corresponding to the face fo of P. Then we may write

where 7 and j range over V* \ {v}} with the ordering induced by that of Fo.
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But the meaning of v} - v}

(1.4) if i = j, to take +m;, where m; is the multiplicity of edges incident to vertex
vy,
(1.5) if i # j, to take —my;;, where my; is the multiplicity of edges e* in E(P*)

with g(e*) = {v], v}

is just

If i = j, consider the edges €, incident to v]. Their total multiplicity is m;.
But in the construction of the dual, each such edge arises from an edge €;; of P
which is incident to (belongs to the border of) f;, the dual face. In fact, the union
of {é;r} is the geometric cycle ¢; and constitutes the border of f; € F(P). It is
clear for the corresponding algebraic cycle that z; - z; = m;, (the inner product is
positive definite).

In case i # j, the edge-sets E; = {¢j,} and Ej = {¢]j,} lead to geometric cycles
in Py, namely ¢; and c;, which lead in turn to algebraic cycles z; and z;. If v and
v; are not adjacent, both vy - vi = my; and ¢; - ¢; are 0. It v and v} are adjacent,
that is,

Eij :EiﬁE]' 75(0,

each e* € Ejj is counted with —1 sign in v - v] according to (1.5). By the dual
construction, the edges € dual to e* constitute the intersection of the two geometric
cycles ¢; and ¢;. But since f; and f; are adjacent faces (have a common edge),
and are considered as 2-chains, then according to the “right-hand rule” orientation
chosen for P, ¢ must occur as a generator in z; with opposite sign from how it
occurs in z;. Thus
Zi - zj = —Myj = v ~v;‘,

and the matrices M and R are identical, for this choice of ordering and orientation.
Hence

Q(P;) = detR = detM = Q(Py).
This completes the proof of Theorem 0.

Remark. Since the essence of Theorem 1 is the same duality as we have used for
polyhedra, one may construct an entirely geometric proof of Theorem 0, without
considering orientations and chains. In this sense, Theorem 1 becomes a general-
ization of Theorem 0 where more algebra is necessarily involved.

SEcTION 2. GRAPHS WITH CYCLIC ACTION

An n-rotational multigraph is one that has n vertices, and on which the cyclic
group Z, of integers modulo n acts faithfully and freely as a group of multigraph
isomorphisms. The freeness condition means that no vertex or edge remains un-
changed by the action of any element of Z,, except for the identity. One edge e in
G is said to be a rotation of another edge €’ if €’ is the image of e under the action
of a particular group element in Z,. Given the particular group action (by graph
isomorphisms), given any pair of vertices v, v’, and edge e such that tail(e) = v,
there is a unique edge e’ such that

i) € is a rotation of e,
i) tail(e’) =o' .
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An identical statement applies with “tail” replaced by “head” throughout. It is
easy to see that such multigraphs are characterized by a set of non-negative integers

{a1,...,a,} where r = | =], and where by freeness, a, is even if n is even. Their
) b} 2 ) )

meaning is that the vertex labeled 0 (modulo n) has an edge to vertex ¢ with
multiplicity a;.

The sole purpose of this section is to construct a basis of cycles for a connected
n-rotational multigraph. This basis can be used for some special spanning tree
enumerations, as is done in Section 3. Since those examples could have been worked
by themselves, the general construction here appears for completeness.

So let G be a connected, n-rotational multigraph, with m edges and take #; to
be the smallest index between 1 and r such that

a;, > 0.

Let 3 = g.c.d.(i1,n), and y1 = n/x;. Then decompose the vertices into the
following subsets

PQI(0,i1,2i1,...,n—i1)2(0,1‘1,...,(;1/1—1)I1)

P, = (k51 + K201 +K,...,n—i1+K) = (k21 + &, ..., (y1 — 1)z1 + &)

for 0 < k < #1. A vertex can be represented by [f, x|, meaning fz; + k. In
Py the “fundamental edge” #; connects 0 with g;2,, where gi2; = 2;. This edge
has multiplicity a;,, as do corresponding edges in P,. Thus all edges of the form
j = kz; are “internal” to some P, depending on the starting vertex. Given an
edge j = gx1 + [, j connects Py and Pg.

Collect these residues {8} and choose the smallest index i5 that represents one,
say 12 = ha1 + fo. Let 22 = g.c.d.(f2, 1), Y22 = 1, gaz2 = 2. We can now view
Py, ..., Pp,—1 as broken into “orbits”

P()l = {Po, PxQ, Pnga EERE) P(yz—l)“w}
Pl ={P1, Pryy1, Pozyp, - - -, Plya-1yeatr}

P.’[}z—l = {PZ‘2—1: P2£L‘2—1a . ~;P(y2):c2—1}-

The fundamental edge (B2 joins P} with P;Q. At this point a vertex v can be
represented by [f1, f2, k] and is simply

v=fizx1+ foxa+ K, 0<K <z,

in the usual notation. We may continue this process and thereby obtain a se-
quence of levels PO, PL ... P*, such that at each level P2 is a collection of disjoint
subgraphs of G

P ={Ps,...., P _1}.
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Some characterizing properties that hold of these levels are as follows:

zg =n,so P’ ={vg,...,vn—1}, simply the collection of vertices of G,
1 PO imply the collecti f verti f G
(2) P* = {G}, the singleton set whose element is the entire connected graph G,
(3) Uf;gl V(Pj) = V(G), the union of the sets of vertices at any level gives
all of the vertices of G
each P is a subgraph of P5™" for exactly one 0 < j' < z441 — 1;
4) each P i bgraph of P5+! f tl 0<j' <oy —1
us zg = n and zs = 1 ,with zg4q1]|zs for 0 < a < s.
5) th d 1 ,with z,4 for 0 <

The inductive definition of P2*! is as follows. Any vertex v € G is contained in
exactly one P, 0 < j < z,. In fact

'U:flr1+f2r2+"'+fara+j,

where 0 < fi <y, yiz1 = ;-1 1 <1 < a. All edges which are in the image under
rotation of the vertices of the edge

(Oazglzl)
=1

are to be found in P;* for some j. So we consider classes (under rotation) of edges
represented by (0,v), and let 3 be the residue of v modulo z,. Choose the smallest
B > 0 among all of these edges (smallest as standard integer representative of an
element of Z,,). Then let 2441 = g.¢.d.(8,24), Yat1Zat+1 = Zo. By definition we
take

Yat1—1
V(POCH_l) = U V(qul‘a_*,l)
k=0
Yatr1—1
V(Pja+1) = U V(Pl?xaﬂﬂ')
k=0

where 0 < j < Zg41.
The internal edges of Pf“ consist of

o

(1) all internal edges of every subgraph Pl itis
(2) all edges in G incident to vertices in P and Py with k; # ko, which are
rotations of an edge (0,v) where v =0 mod zq41.

Equivalent to condition (2) is to have v congruent to 0 modulo £, since 3 was
a minimal representative. Finally, a particular choice of a representative for the
rotational class of edges in (2) is made, called 441, the principal o + 1-connector.
Hence iq41 = 0 mod 2441. This completes the description of the subgraphs {P;*}.

Next we associate to each level P% a set of cycles Y. At level P, there are no
edges in Pjo, so there are no non-zero cycles and Y° = (. At level P! we form
the collection of cycles Y* consisting of

(1) all cycles belonging to Y,

(2) new cycles to be added in.
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Finally, Y* will be a set of cycles for P*, and we will show that Y* is a (Q-basis
(basis over the rational numbers) for C(G).

In each case the cycles in Y**t! will be contained in P(?H. That is, edges
belonging non-trivially to a cycle z € Y**! will belong to P(?’H and not to any
other P]»a"'l, 1<) < a1

The new cycles from P(?’H consists of three different types:

a) boxes,

b) triangles,

¢) lassos.
The sets of boxes, triangles, and lassos are denoted B®+! T+l [*+1 regpectively.
We make use of a canonical orientation on the multigraph G that is induced by
the labeling of the vertices {v} = {0,1,...,n — 1}, and the construction of the P/*.
Namely, a connecting edge between P and P’ is consistently oriented (the former

subgraph contains the tail, the latter contains the head), if ky — k1 < % = 7y,

with arithmetic being done modulo z,. If k3 — ky = r4, then there will be an even
number of this type of edge: assign a positive orientation to half of them and a
negative orientation to the other half.

For the construction of the bozes, consider the principal o + 1-connector iq41,
based at vertex 0 (“the origin”), which clearly lies in P§*. The head of i, then lies
in P§ in our given notation. Let A = Py, A= P(ak-l-l),@’ where lower indices are
evaluated modulo z,, and where 0 < k < yo — 1. Then, given a vertex v € A, there
is a rotation of 7,41 whose tail is v, and whose head is a vertex v’ € A’.

Now take an edge e € A, whose boundary according to the given “natural”
orientation is

de = vy — v7.

Let dy (resp. da) be the connecting edge which is a rotation of i441 whose tail is
v1 (resp. v2). Then the heads of d; and da, called v} and v} respectively, both lie
in A’”. In A’ lies an edge e’ which is a “translation” of e by 7,41, namely its tail
and head are v} and v} respectively.

Consider the oriented (“algebraic”) cycle

be:€+d2_€/_d1-

Forming such a “box” for each edge e € P, , k=0,...,ya, — 1, gives all the boxes
necessary. 'To summarize, to each edge lying in some Pys, k = 0,...,yo — 2, there
is a box b, to be added to the collection of cycles Yo+1,

Next we go to the construction in case b), triangles. To any edge e that connects
a vertex in P with a vertex in some P k, k' =0,...,y, — 1, we associate a
new cycle t. called a “triangle”. The edge e may be anything except a principal
connecting edge i,41 discussed above; it may well be a “replicate” in the multigraph
sense, having the same head and tail as io41. If we rotate e to the origin, it now
takes the form (0, ¢), where

o
¢=_ vii+ froap1, where f =k —kmod yap:1, 0<% <y
=1
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Suppose that the tail of e is in fact vo € A = Py, and its head is v, € A =
(k+f)x . Now the principal connector 441, when multlphed by the integer —f,
gives a chain that can be rotated so that its tail is at

vg € A.

The head of this chain u is in A, and we may name it w (= E;:ll Sjxz; +kxo). But
A is by construction a connected subgraph of G, so one may choose a chain a, with
boundary w — v that lies entirely in A. In fact a. can inductively be exhibited as
a sum of integer multiples of principal connectors i, vy =1,..., .

This being done, we define the triangle to be the 1-chain

te=e+u, —a..

The reader may have noticed that we did not include in our definition of “box”
the case corresponding to the subgraph A = P(‘; _1)g> One might have expected
that the principal connectors

Z'a+1IA—>AIIP6l

be used to form boxes. But this would result in a linearly dependent (over Z) set of
cycles. Instead we form another set of cycles utilizing those “missing” edges that
are rotations of 2441.

Starting at a given vertex vp in Ag = P, we arrive via t441 at vy in Ay = PE‘.
continuing in this manner gives a sequence of vertices {vy, }, where 0 < k < yo41—1,
vp € Ap = P,?ﬁ, according to

Olat1 = Vg1 — Vg

Repeating this construction once more for k = yo41 — 1 gives an edge with tail at
vp and head at vy € Ag. Recalling from above that any two vertices in Ag have
a canonical chain cg, constructed from rotations of principal connectors iy, v < a,
such that dco = v — vg, we define the lasso based at vy to be the chain

lyy = (tat1)y, + (lat1),, + -+ (lat1) —co.

Vygq1-1

The subscript vg, . .. refers to the tail vertex of the given edge. The set of lassos L
is now the collection of all 4,, over all vy € Pg'.

Consider the totality of cycles found in Y* = Y*~1 U B* UT* U L*. In order to
show that this set forms a basis of cycles for G over the field (Q, it is sufficient to
show that

(1) Y* is a Q-linearly independent set,
(2) the cardinality of Y* is m — n+ 1, where m is the total number of edges in
G, counting multiplicity.
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We set about demonstrating the linear independence, item (1). First of all, Y is
empty, hence linearly independent. Assuming that Y* is (Q-linearly independent,
suppose that there exists a rational linear combination

A=) b, 6.€Q, ceyt

such that A is 0 as a chain in Cl(POaH). Suppose that a lasso £ € LT occurs
with non-zero coefficient é; in A. By construction, some rotated version of the
principal connector ¢, : P@a+1_1)ﬁ — Pg* occurs non-trivially in £. Inspection of
the construction of Y **2 shows that this edge p, occurs in no other cycle of this
set; hence we have contradicted the assumption that A = 0.

Next suppose that there is a triangle t € 7%t such that 6,¢ # 0. Then t arises
in the construction from an edge

Ji P — Poa

The edge j is contained with coefficient &1 in the chain t. Furthermore, j occurs
in no element of Y**! besides t. Hence we must have as before that §; = 0 for all
triangles t € 7*+!.

The third and final case is when a boz b € B*t! has a non-zero coefficient
6y in A. By the construction of boxes, there is then an edge e € Py, where
B = tq41 modulo x4, such that

b:e+d2—6l—d1.

Here dy,ds are rotations of in41 and €’ is a rotation of e lying in P(ak+1)ﬁ' Now

there are other cycles of B*t! that contain d; and d» non-trivially; these are boxes
of the form

a) €+ds—€ —dy, or

b) €+d1—€l—d4, or

C) €+d2—€l—d1.
In the last case ¢), the edge € is a replicate of e. In taking a linear combination of
such chains, a standard argument shows that the only way to have the pertinent
connecting edges d; add up to zero, is to remain with a cycle p’ — p. Here, p €
Cl(P(C;cH)ﬁ) and p’ € Cl(P,?ﬁ) are both cycles. Subsequently, the only way to
eliminate p’, say is to use boxes (other cycles of Y® having been previously ruled
out for use in the linear combination A) that connect to the subgraph P(?H?)ﬁ'
But this gives rise in A to another cycle p” € Ag42, so we remain with the task of
eliminating p — p”. The only chance to do this is to repeat our process of adding
in more boxes, which finally results in a cycle ¢ — ¢,

q¢€ Cl(POa)J ql € Cl(P(?/a_H—l)ﬁ)'

But there are no boxes containing edges connecting Pg* and P@Ml

when yo41 = 2 which has already been dealt with), no progress can be made. Thus,

_1)p (except for
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the assumption that the box b is part of a (Q-linear dependence in B* leads to a
contradiction.

Therefore a linear dependence A among elements of Y21 can only involve el-
ements of Y* (no boxes, triangles, or lassos at level @ + 1). But by an induction
hypothesis, such a linear dependence does not exist either. Hence Y? is a linearly
independent set of cycles for G.

Next, to settle item (2) above, we enumerate the number of elements in Y **1.
Let n,, mq be the number of vertices and edges respectively in the subgraph Fg*.
We recall that card(Y?) = 0. But ng = 1,mg = 0, so card(Y") = mg — ng + 1, as
an initial step for an induction. Also, ny; = n,ms; = m, so in proving card(Y?*) =
m — n + 1, the formula card(Y®) = mqy — no + 1 can be taken as an induction
hypothesis.

There remains to prove this statement with « replaced by a + 1,0 < a < s.
Now in Pél'"l there are yo41ne = Mmq vertices. There are ya41mqo “internal” edges
inherited from Pg*, P2 ,..., and in addition there are y,41ms connecting edges
arising from principal connectors which are rotations of (0,4441). Finally, suppose
that from each vertex in F§* there is a quantity a of other edges incident to some
other Pf*, j # 0. (By rotational invariance a does not depend on the particular
vertex chosen.) This exhausts the different types of edge, and we may write

Mao41 = ya+1(ma + ng + ana)~

Now we count the number of elements in the set Y®+!. There is one box for
each edge of
Pl?ﬁﬂ kIO:"':yOz+1_2~

Thus there are (yo+1 — 1)mo boxes. For triangles, there is one triangle for each
non-principal connector. That gives a total of an,ys41 triangles. Finally, since if
we move the origin of a fundamental connector (0, iy) within P§*, each such rotated
connector gives rise to a distinct lasso; hence there are n, lassos total.

Thus we have

card(Ya'H) = card(Y*) + card(Ba'H) + card(T“'H) + card(La'H)
=My —No+1+ (ya+1 - 1)ma + ayaring + no.

But

Mat1 — Natl + 1 = Yag1(Ma + o + aNa) — Yag1na + 1
= Ya41My + AYa+1No + 1.

So we do have
card(Ya'H) = Ma41 — a1 + 1,

which was to be proved. In particular, card(Y*)=m* —n*+1=m—-n+1,s0Y*
has the required number of elements of a (Q-basis, and is linearly independent, and

hence is is Q-basis of C1(G).
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Theorem 2. The set of cycles written as Y?® is an integral basis of integral cycles
for an n-rotationally symmetric multigraph G.

Proof. By construction, all of the cycles from Y ¢ are integral, and in fact each edge
occurs with coefficient £1, so by the Lemma 1, if Y* is a Q-basis of cycles, it will
be a Z-basis of cycles. But verification of the two itemized points above shows that
Y? is a rational basis for the rational cycles of G.

To end the Section we briefly examine the important special case where G, has
its first characterizing number a; > 0. Clearly then G,, is automatically connected.
In fact z; = 1 and P} = G, so the basis Y* = Y! has a particularly simple form.
Since there are no edges in P = V(G), there are no boxes and B* = 0. Any edge e
which is not a rotation of the principal connector (0,1) = (1) gives rise to a triangle
t.. If e = j — i, then take

te=(1);+(L)p + -+ (1)j—1 - ¢

This is valid too when e is a replicate of the principal connector (1).
Besides these 0-level triangles, there is a lasso, namely

by = (1)0 + (1)1 +-t (1)n—1'

Corollary 1. According to Theorem 2, the triangles and lasso give an integral cycle
basis for G, as desired.

SEcTION 3. COMPUTABLE INTEGER SEQUENCES

Using Theorem 1, it is possible to obtain recursive formulas for the number of
spanning trees for various classes of multigraphs. In this section we apply the
“dual” method to certain n-rotational graphs. The results are compared with
those obtained in [Vo&Wa]. This comparison leads to two different methods of
representing certain sequences of integers. One way consists of a recursive formula
utilizing only integer calculations. The other is a “closed-form” expression that
requires finer and finer approximation of non-rational numbers (such as roots of
unity). The main references for the section are [Sj] and [Vo&Wa], from which we
freely quote results.

Let the algebraic numbers A be the algebraic closure of Q. A sequence of integers
{a;} is called “algebraically computable” if there are y constants hy,...,h, € A
and v sequences of algebraic numbers

{b}c}, k=1,...,v,7=1,...
such that the sequence {c;},
c;=hy, 1=1,...4
Crjtk+u = b;'c
has the following properties:

1) a;i = cy(i-1)+1,
i) form=vj+k+u, 0<k<ry,

(3.1) em = gk(Cm—1,- -\ Cm—dy )-
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Here g;, is a polynomial function of dj variables with coefficients in A that depends
only on k and not otherwise on m.

A similar sequence {a;} is called integrally computable if it fulfills the definition
of algebraic computability, and in addition all of the constants h; are integers (€ Z),
as are all coefficients of the polynomials g;.

This is not necessarily the best definition. One might consider replacing the
formula (3.1) by

/\k(cm, ey Cm — dk) = 0,

where Ap is an integral multinomial that “happens” always to have an integer
solution ¢,,. For a discussion of this phenomenon, refer to the recent Mathematical
Intelligencer article by Gale [Ga].

Now consider the graph G,(1,2) with n vertices and a1 = a3 = 1,a; =0, j #
1,2. Select the canonical basis for cycles Y'! as in Corollary 1. Then the intersection-
incidence matrix R, as in Theorem 1 becomes

C,, 2
2
2 ... 2 n

Here the first n rows are given by the triangles in T},, ordered according to the
action of a generator of Z. Also, C), = circ(310...01), the circulant matrix with
the indicated first row. The standard (and outstanding) text on circulant matrices
is [Da]; for recent applications to communications engineering, see [Gu&Wa]. Now
it is seen from [Sj] that det R, = ng2, where ¢, = ¢n—1 + qn—2, n > 5. From this
it is clear that p, = det R, form terms of an integrally computable sequence.

Looking instead at the vertex-incidence matrix M, (and M,), one observes that
the determinant of M, equals the product of the eignevalues of M,, except for
the 0 eigenvalue. See also [Wo&Fe]. Since M, is circulant, these eigenvalues are
explicitly known in terms of the n-th division point of a circle. This leads quickly
to the following formula:

(3.2) Q(Gn(1,2)) = nrﬁ(?)—}—?cos?)

k=1
k#r
where again r = [251].
This, combined with the above formula for p,,, yields

. 27k
3.3 n=[fn= 342
(3.3) q fi H( + 2cos -

k=1

)

which was first discovered by Bedrosian [Be], also in the context of spanning tree
enumeration.

Another algebraic formulation for ¢, comes from a general result on page 353
of [Vo&Wa]. It is possible to express Q(G,,) in terms of the roots of a polynomial
p(z) that depends on ay, ..., a,. In case G = G(1,2), one derives

p(z) =2? + 3z + 1.
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-3+5
2

Letting «, 3 be the roots of this polynomial (= ). Then

Q(Gn) = (=) 2" = (8" — 1),

This formula arises from equating the two distinct ways of expressing the resultant
of the polynomials p(z) and #” — 1. Hence we have

(_1)n+1

an=Ffa="—%

(@ =" -1

Substitution for o and 8 and some manipulation leads to

() ()

the formula of Binet, as on page 148, [Hu].
The right hand side of the Binet formula gives f,, as an algebraically computable
sequence where we can take

145

c1 = 2
1—+/5
Cy =
2
1
Cc3 = ﬁ(cl — Cz)
Cq4 = C1 " Co
Cy = C2 - Co
1
Cg = E(C;} — 64)

C7 = C1 " C4

and so on, where fr = c3p.
On the other hand, the Fibonacci sequence has the integrally computable for-
mulation as follows:

c1 =1
ce =0
c3=1
cqg =1

€5 = €3+ ¢4

Cg = C3
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Here p = 4, fr, = ¢ar_1, and the associated functions are

Cop = g(C2k—1, .. ) = C2k-3
cart1 = 9(Cak, . ..) = cap_1 + Cag.
We carry through the same process for the graph G,(1,3), where a; = 1,a3 =

0,az3 =1,.... One derives as in [Sj], using the dual formulation R, with an expan-
sion of the determinant the formula

nAZ, n=odd

2nB2 n = even.

Q(Gp) =det R, = {
Certain initial values are given for {A;, B;, e;, g;} for i <5, where {¢;} and {g;} are
sequences of integers where the following relations hold.

ex =4dep_1 —4ep_3+ep_q — 2951+ 2952
gk = 2€p_1 — gr—1

3.4
(34) Ap = 2ep_1 —€p—2+ €p—a — 29 _3

Bk =€ — €kp—-1-

One has merely to sort out these formulas to obtain an integral computation se-
quence for Q(G,,) or let us say {A% 2B%}. But the method of [Vo&Wa] applies
here as well, with polynomial

pla) = 2* 4+ 22° + 42 + 22 + 1,

whose roots may be given as a1, as, a3, as. In fact we can take o = %(—1 — 1+

V21 —4), and so on (here i = y/—1). Then we have

(3.5) Q(Ga(1,3)) = % H(ay —1).

This is an algebraic closed-form expression that happens always to be an integer.
But 6,, = Q/n is an integrally computable sequence as can be verified using formulas
(3.4) above. This fact is not a priori self-evident. We have obtained two different
computations for 8,,, the one algebraic, the other integral.

We make a final observation concerning 6,. The polynomial p(z) factors as

ple) = (22 + (1 + )z + Dz + (1 -z +1).
Choose a root of the first factor a; and a root of the second factor az. Then in fact
(af =1)(eg —1) =& + inn,
where &, n, are integers. It is unclear whether the sequence

{6,} = {3,4,-3,4,13,-20,3,64, —93,
— 36,333, —380, —387, 1684, —1373, ...}
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is integrally computable. But {{,} is clearly algebraically computable since both

{€n +ins} and {&, — in, } are (see below).

Since (g — 1)(aq — 1) =&, — Ny, We get
1042 n =odd
QOBT2 n = even.

(3.6) &+ﬁ:{

Thus in particular we have an algebraic method for generating certain solutions of
the Diophantine equation
a’ +b? = 102

From the lists of {{;} and {#7;} we observe
13% + (=9)° =10 - 5
3% 4+41°=10-13°

for example. It is well known how all such solutions (a,b) are generated, as in
Chapter 8 of [LV], but it is of interest to consider why just these solutions arise in
the order that they do from the formula (3.5).
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