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Abstract

Semi-Markov processes are increasingly being used in the modeling of complex
reconfigurable systems (fault-tolerant computers). The estimation of system relia-
bility reduces to solving the model for its state probabilities. When decomposition
into smaller submodels is possible, solving the decomposed models and joining
the solutions has several advantages, including lower computational cost and more
stable numerical properties. Interesting cases arise when non-failure states of the
subsystems can be system failure modes. A technique is proposed to combine infor-
mation about the submodels to estimate this additional probability. This question
is considered in the framework of Semi-Markov processes whose transition densi-
ties have a rational Laplace transform. We state a theorem that characterizes in
a simple fashion when these transforms exist, and prove as a special case that the
transforms always exist when no “instantaneous jumps” are present. When there
are no instantaneous jumps present (distributions and densities are “exponomial
functions”) the state probabilities are exponomial as well. This gives a way to
build up a system hierarchically from smaller systems. The technique is applied to
a Semi-Markovian reconfigurable voted sensor submodel and a constant-rate Mar-
kovian network submodel. The solution is obtained by our formulas employing a
symbolic algebra package.

Introduction

Modern reliability modeling practice involves several techniques, including Fault-
Tree analysis and (semi)-Markov processes. Fault-Trees enable one to evaluate the
impact of certain dependencies within the entire system. For instance, the fact that
the failure of a certain component results in the failure of higher-level component
(sub-system) may be modeled. Markov and semi-Markov processes (chains) can
depict more general types of dependency. For example, consider a triplex system
consisting of 3 identical components A1, A2, A3, each with failure rate lambda.
Then system failure can be represented within the domain of Fault-Trees by a ‘2
out of 3 gate’ as in Figure Int-1a, or by a set of AND and OR gates (Figure Int-1b).
Failure may also be depicted by a Markov process (Figure Int-2). With the rates
indicated, the probability of failure at time t is the probability that the process is
in state F at t.
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Another “fault-tolerant architecture” is a triplex which operates by (instantly)
detecting a first fault and then reconfiguring to a simplex system. This is accom-
plished by unplugging the defective component and a randomly selected “good”
component. There is no way, using only the three components in a logic gate
(Fault-Tree) arrangement, to represent the event of system failure. But it is easy
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to give the corresponding Markov process (Figure Int-2b). Thus the necessity for
Markov models tends to come about when system reconfiguration is a characteristic
feature.

For mission-critical systems found in process-control, avionics, and so on, one
is concerned with the reliability at some particular time (mission time). Given a
Markov process that models a system, the unreliability or failure probability can
be found by using a numerical differential equation solver [Reibman & Trivedi].
Alternatively, one may wish to have this quantity in closed form as a function of
time.

Large models (with many states and transitions) arise naturally in the study of
complex reconfigurable systems. The solution of such a model can be both expensive
and time-consuming. However, when the model can be decomposed hierarchically
into smaller models, the process of solving the smaller models is generally less
expensive than solving the large one. The desired reliability number associated
with the large number can be computed from quantities derived in the solution of
the smaller ones.

The major purpose of this article is to increase our understanding of hierarchical
modeling and to increase our capabilities for solving such models. Two equations,
presented as (4.7) and (4.8), govern the method of solution by decomposition.

In order to write down these decomposition relationships we must present the
Chapman-Kolmogorov equations somewhat differently than in previous literature.
However, [Ross] gives a related treatment. These C-K equations involve quantities
(probability density functions) which are used in a new integral equation, (4.7).
The solution of the integral equation is a function that expresses part of the failure
probability present in a “combined model” that results from two smaller models.
The failure mode involved here (in the combined model) does not generally arise
from the failure modes of the smaller models. Thus we have developed a tech-
nique for combining models accurately, even though there may be some interaction
between them, leading to new failure modes.

The obvious advantage of the closed-form framework is that once the solution is
found (presumably at significant computational cost), the reliability is easily cal-
culated for any desired value of time t. In addition, it is easier to find sensitivity
functions (with respect to failure rates or other parameters). The Symbolic Hi-
erarchical Automated Reliability and Performance Evaluator (SHARPE) program
takes this closed-form approach [Sahner & Trivedi1]. The reliability functions en-
countered in SHARPE are the so-called “exponomial” functions and can be easily
represented “symbolically”. They consist of probability distribution functions of a
particular algebraic form to be described shortly.

The SHARPE modeling framework is amenable to the use of hierarchical mod-
eling techniques. SHARPE was intended to promote hierarchical decomposition.
Much of the information needed in applying our decomposition method can be
obtained from SHARPE, either directly as output from the program or after a
modest amount of additional computation. The examples (in section 6) that illus-
trate the use of our method are made much clearer by adhering to the closed-form
(SHARPE) framework; the reader can observe functions arising in the solution
process explicitly.

For the remainder of the Introduction we examine the SHARPE methodology,
closed-form solution, and hierarchical modeling in greater detail. Section 1 is a
review of the basic concepts of stochastic process theory needed for the finite-state
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semi-Markov processes that we deal with. Section 2 gives a form of the Chapman-
Kolmogorov integral equations for a chain, in a manner that provides quantities
necessary in the study of hierarchical decomposition. Section 3 presents the basic
facts of the SHARPE solution method applied to certain types of chain. This is
not to be interpreted as a literal description of code (the author is not a developer
of SHARPE), but as background useful in judging what the program’s capabilities
are, and what enhancements might be desirable.

Section 4 presents an introductory example which shows how simple models can
be built up into larger ones, and how repair complicates the decomposition issue.
The problem is stated, of how to compute probabilities in a “combined model”
(which may not even be semi-Markov). An integral equation is given whose solution
answers this question. Section 5 is a digression on constructing certain exponomial
distributions, and section 6 provides two examples that illustrate the power of our
method.

Exponomial Distributions

To construct these distributions in an algebraic manner, we take as base field R,
the real numbers (an idealization of computer floating-point numbers). The set of
functions {eαt, sinαt, cosαt, t} where α ∈ R, generate a ring of functions, which is
extended by linearity over R to form an algebra Exp. The subset of this algebra
consisting of distribution is called Dexp, the exponomial distributions.

A function F ∈ Dexp has the properties that

(1) F (0) = 0,
(2) limt→∞ F (t) = 1,
(3) F (t) is non-decreasing for t ≥ 0.

Condition 2) can be relaxed to limt→∞ F (t)le1 for certain applications. In that
case we say that F is defective, or incomplete, and has Mass = 1− limt→∞ F (t) at
∞. It is true that, given a finite state Markov process (chain) M , its unreliability
function is a complete exponomial distribution provided that a certain technical
condition holds. The condition is that every absorbing state is a failure state, and
that whenever a state is exited, there is a non-zero probability that it will never be
visited again. Hence the “operational” states are transient: call this the “transient
state condition”. If we weaken this condition to say merely that every failure
state is an absorbing state, then the unreliability function is a defective exponomial
distribution. This defines a larger class of functions, which we call Dexp+.

The SHARPE program calculates such an unreliability function in closed form for
any Markov process satisfying the “transient state” criterion. In addition, SHARPE
can find the unreliability distribution of certain semi-Markov processes. The process
must be acyclic and the transition functions should be in Dexp. In a semi-Markov
process, transition rates from one state (the present state) to another (the receiving
state) are not constant, but depend upon the time elapsed since the system entered
the “present state”. We will later show (in section 3) how to use SHARPE to obtain
more information about the chain (Markov or semi-Markov process) than is simply
provided by the output of the program. For example, given a Markov process
with cycles, SHARPE does not furnish the probability function (not a distribution)
of a transient state. We show how to modify the chain, and then apply the C-
K equations to find this. It is necessary only to solve one convolutional integral
equation, not a system of equations, and to perform a few simple manipulations



5

using output generated by SHARPE. The integral equation is generally easy to
solve using the Laplace transform. This approach was first used by Lotka in the
theory of industrial replacement, where similar renewal-type integral equations also
arise. See [Lotka]. The rigorous foundations of this solution method were brought
together in [Feller2], using analytic techniques developed in [Churchill].

Hierarchical Modeling

As already indicated, hierarchical modeling methods are built into SHARPE.
For instance, one way to construct a semi-Markov process is by means of state
transition functions (distributions) given by the failure distribution of a (constant-
rate) Markov chain. That is, in order to know explicitly a transition function of
the semi-Markov chain, the “low-level” constant-rate chain must be solved. One
process is in a sense embedded in the other. For examples of this type see [Sahner
& Trivedi2]. A “full model” could be constructed by expanding the states in the
higher-level semi-Markov chain into several states of a Markov chain. In many cases
this capability of solving the higher- and lower-level models separately results in
less computation and greater numerical robustness.

Another common class of decomposable systems consists of the Cartesian prod-
ucts. Given M1, M2 Markov chains, then N = M1 × M2 is Markov. Selecting a
state Λ = (A,B) ∈ N , A ∈ M1, B ∈ M2, one may modify N by removing all exit

transitions from Λ to form Ñ . Thus Λ is now an absorbing state. Define PΛ to
be the distribution function (possibly defective) corresponding to Λ. This function
could be interpreted as “the probability that by time T we have simultaneously
been in state A of M1 and state B of M2”. We give several examples of how
this scenario can arise in practice. The method we present allows one to find PΛ

without having to solve the large chain Ñ . It is only necessary to obtain certain
information about the smaller chains M1 and M2, which can be found for example
by using SHARPE. Then another integral equation, (4.7), must be solved, leading
to the desired probability function PΛ. This integral equation is similar to the
Chapman-Kolmogorov forward equation (see [Feller1] p. 458), and may be solved
by the Lotka-Feller method.

This decomposition approach has several advantages. Work involved in solving
an arbitrary chain with n states increases as the cube (n3). In the Markov case,
this is essentially the work involved in finding the eigenvalues of an n × n matrix.
Hence, where decomposition is possible, much less work is needed to find the desired
probabilities. Furthermore, the Cartesian product of even a Markov chain M1 with
S1, a semi-Markov chain, need not be semi-Markov. In general, it is a stochastic
process where transition rates depend on the time elapsed since entry into the state
previous to the present state. Provided that one does not wish to deal with the
theory of such general processes, the decomposition method is essentially the only
viable approach.

SHARPE is a powerful tool for obtaining exponomial solutions of reliability
models. The techniques suggested in this paper greatly expand the computational
horizons of SHARPE in directions consistent with the hierarchical modeling phi-
losophy, and thus have more than theoretical value. But the techniques may also
be used without recourse to SHARPE, and using them in the context of numerical
methods instead of closed-form solutions is a promising possibility as well.
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1. Stochastic processes and distributions

We give a brief review of stochastic processes, with emphasis on the ones that are
of greatest interest to us, namely Markov and semi-Markov processes (or chains).
Although the term chain is sometimes used for discrete-time systems, we use the
term to denote a continuous-time process that is either Markov or semi-Markov.
The probabilistic definition of a Markov chain proceeds as follows. One starts with
a space of outcomes, or sample space S. A continuous-time stochastic process is, for
each t > 0, a function X(t). The domain of the function is the sample space, and
each image X(t)σ, where σ ∈ S, is an integer j from 1, . . . , N , identifying a state.
So one may say that at time t, the process or outcome σ results in state j. It is
most common to classify outcomes into events, and to assign probabilities to the
various events. For a finite sample space where all outcomes are equally probable,
of course

P (E) =
# of σ in E

# of σ in S
,

and the expression (which is a slight abuse of notation) P [X(t) = j] is the prob-
ability of the event consisting of all outcomes σ such that X(t)σ = j. The quan-
tity P [X(t) = j], called the state probability for state j. One can define a finite

Markov chain to be a finite-state stochastic process X such that, for any set of
times t0 < t1 < · · · < tn < t, the conditional probability that X(t) = x given
that X(tn) = xn, X(tn−1) = xn−1, . . . ,X(t0) = x0, where x, x0, . . . , xn are certain
states, is equal to the conditional probability that X(t) = x given that X(tn) = xn.
This is the characteristic memoryless property. This finite Markov chain has the
additional property of time-homogeneity if the quantity

pij(t) = P [X(u+ t) = j|X(u) = i]

depends only on t and not on u, for all u > 0, i, j such that i 6= j. As usual, P [E|F ]

means the probability of E given F , or P [E∩F ]
P [F ] .

Now if one defines

λij =
d

dt
pij(t)|t=0,

this quantity may be interpreted as follows. The increase over a short interval dt,
of the probability of being in state j, due to the original probability of being in i,
is equal to P [X(t + dt) = j and X(t) = i]. From the definition of λij , this equals
λijP [X(t) = i] · dt.

By a suitable modification of what we have just done, we may obtain the defi-
nition and some properties of a semi-Markov chain. We use the idea of conditional
probability density function, for which see [Trivedi]. Say that the process X enters
state xj at time tj if X(tj) = xj , and if there is an ǫ > 0 such that X(tj − δ) 6= xj ,
for all 0 < δ ≤ ǫ. Also, if X(0) = x0, the process X entered x0 at t = 0 (x0 was the
initial state). Given a set of times t0 < t1 < · · · < tn < t, consider the conditional
density function of X entering x at t given that X entered xn at tn, X entered xn−1

at tn−1, . . . ,X entered x0 at t0. If this is always equal to the density of X entering
x at t given that X entered xn at tn, the process is said to be semi-Markov. We
have for each pair i, j of states a density function

(1.1) Gij(t, u) = density of X entering j at u+ t
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conditional on X entering i at u.

The time-homogeneous case occurs when Gij is independent of u > 0 for all
i, j, t > 0. We shall henceforth refer to a time-homogeneous Markov or semi-
Markov process as a chain. Such a chain, since Markov implies semi-Markov, is
characterized by the functions

(1.2) Gij(t) = density of X entering j at t given that

X entered i at time 0.

It has been shown (see [Ross], p. 89) that certain other sets of functions serve
to characterize a chain. Consider the (possibly defective) distribution Fij = P [X
enters j at some time τ , 0 < τ ≤ t, and X does not enter any state at any time κ,
0 < κ < τ |X entered i at 0]. In words, Fij is the probability, conditional on entering
i at 0, of ending the sojourn in i by a jump to j before time t. In his 1964 study
[Feller3] of the C-K equations, Feller makes use of Fij . Another class of functions
which determine a chain is referred to as the transition distributions Cij . Described
in words, Cij(t) is the probability that X will jump to j (first entry) by time t,
given that X entered i at 0 and assuming that Cij is the only transition out of state
i. Thus Cij is a distribution valid in the absence of competing transitions. The
distributions {Cij}, over all j, are assumed to correspond to the independent events
of jumping from i to the various states j. The functions {Cij} are what is supplied
to SHARPE when it is desired to “solve” a chain (determine the time-dependent
probability functions of its states).

A relation between Fij and Cij will be given subsequently. For instance, when
the chain is Markov, we have

(1.3) Cij(t) = 1− e−λijt, and

Fij(t) =
λij

∑

k

λik

· (1− e−
∑

k
λikt).

The Cij functions can be given in various ways. For certain purposes, it is not
necessary to define them completely but rather it is enough to give their mean and
variance as distributions. This approach is used by the SURE [Butler & White]
package to find upper and lower bounds on the reliability of a system whose recon-
figuration times are not exponentially distributed. The SHARPE package, on the
other hand, expects to be provided with Cij as a function in the class Dexp. In
other words,

(1.4) Cij(t) =
m
∑

r=1

art
krebrt,

where kr is a non-negative integer and ar and br are real or complex numbers. Cij

should be a complete distribution function, in particular real-valued; from this it
is not hard to show that the terms with non-real coefficients ar, can be matched
in pairs with indices r, r′, such that kr = kr′ , ar = ar′ , br = br′ , where the bar
denotes complex conjugation. This property will be referred to as the “conjugacy
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condition”. A typical expression would be

(1.5) 1− e−t +

(

ia

2

)

[

e−(1−i)t − e−(1+i)t
]

or 1− e−t − ae−t sin t.
Having made the requisite definitions, we introduce standard terminology relat-

ing to the classification of chains in order to simplify later exposition.

Definition 1.6 A chain is ergodic if, given that it is in state j at time t, if k is
another state, then there is a later time tk such that P [X(tk) = k] > 0.

Definition 1.7 A state k is absorbing if, given X(t) = k, then P [X(t′) = j] = 0,
for all t′ > t and j 6= k. Thus an absorbing state, once entered, can never be left.
Similarly, a subset of the set of states could form an absorbing subchain if once
entered, it is never left. Clearly, a chain with an absorbing subchain that is not the
whole chain cannot be ergodic.

Definition 1.8 A state k is transient if there is a state j 6= k such that given
X(t) = k, then for some t′ > t, P [X(t′) = j] > 0, but given X(t) = j, then for all
t′ ≥ t, P [X(t′) = k] = 0.

Definition 1.9 A chain is irreducible if it has no absorbing subchain, other than
itself.

The class of exponomial distribution functions is a natural one for the study
of chains. In fact, in the Markov case, the function PA as above is exponomial
as can be seen from the differential theory of constant-rate chains. Let Q be the

“infinitesimal generator” matrix, qij = λij for i 6= j, qii = −
∑

j 6=i λij . Then if ~P (t)

is a row vector of functions [P1, . . . , Pi, . . . , Pn], where the n states of the chain are
numbered 1, . . . , n and Pi(t) is the probability of being in state i P [X(t) = i] at
time t, we have

(A1) ~P ′(t) = ~P (t)Q, ~P (0) = ~P0,

[Reibman Trivedi]. Here ~P0 is the vector of initial probabilities. Then

(A2) ~P (t) = ~P0e
Qt,

where we use the matrix exponential eQt =
∞
∑

i=0

(Qt)i

i!
. Putting Q into Jordan

normal form Q = SJS−1, it follows from [Moler & Van Loan], p. 381] that

(A3) ~P (t) = ~P0Se
JtS−1.

If J = diag(J1, . . . , Jp), then

(A4) eJt = diag(eJ1t, . . . , eJpt).
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From formulas A1-A5 it follows that any Pi(t) can be written

(1.10) Pi(t) =
m
∑

j=1

pi−1
∑

k=0

aijkt
ke−λjt,

where m is the number of distinct eigenvalues of Q, λj is the j-th distinct eigenvalue
of Q and pj is the multiplicity of the factor (x − λj) in the minimum polynomial
of Q. Since Pi(t) must be a real function, the conjugacy condition must hold, and
we have an exponomial function. If i is an absorbing state of a Markov chain, Pi

must be a distribution function, but may be defective. If i is the only absorbing
state, then Pi is a complete distribution, under the assumption made above that
all states are either absorbing or transient.

2. Chapman-Kolmogorov Equations

We present a form of the Chapman-Kolmogorov equations for a semi-Markov
process which will be convenient for our purposes. These are a form of the backwards
equations in that they give probabilities (and densities) by summing over all epochs
(times of a jump), and all results of a jump out of a given state, for the first jump
from that state. Similar equations are stated, with proof, in [Ross], p. 93. We
deal with state probability functions, and their “densities”, which integrate to give
the probability function. Thus a density does not have to be the derivative of a
distribution.

We recall some of our semi-Markov terminology from section 1. In this section, i,
j, k are states; then Cik(T ) = probability that a jump from i to k would be made by
time T , given that i was entered at time 0, in the absence of competing transitions.
These are the transition distributions, and they are assumed to be independent and
competing. (They are distributions of the independent events resulting in jumps to
the different states.) This is the same as the definition from section 1 provided that
C gives a complete distribution. Recall that the unconditional transition function
Fik(T ) is the possibly defective distribution of a jump from i to k by time T , given
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that i was entered at time 0. The two distributions are related by

(2.1) Fik(T ) =

∫ T

0

C ′
ik(t)

∏

j 6=k

[1− Cij(t)]dt.

In words, the probability of leaving i for k by T is the integral of the density of
jumping from i to k at t, times the probability of not having jumped to any other
state by t.

Next let Eik(t) = density of (first) entry time from i to k, given that i was
entered at 0. This is the density corresponding to a possibly defective probability
distribution. We have

(2.2) Eik(T ) = dFik +
∑

j 6=k

∫ T

0

dFij(τ) · Ejk(T − τ), i 6= k,

Ekk(T ) =
∑

j 6=k

∫ T

0

dFkj(τ) · Ejk(T − τ).

In words, for the first equation, the density of first arrival in k is the density of
jumping to k plus the density which results from jumping to a third state at a time
τ ≤ T , followed by a subsequent first arrival in k at T .

The density Gik(t) defined above in (1.2) will be used in forming state prob-
ability functions, and is necessary to compute probabilities of “combined states”
in hierarchical, or Cartesian product, models. We recall that it is the density of
entering k at t, given that you entered i at 0. This differs from Eik in that state k
may previously have been visited (after leaving state i). Then we have

(2.3) Gkk(T ) = Ekk(T ) +

∫ T

0

Ekk(τ)Gkk(T − τ)dτ

Gik(T ) = Eik(T ) +

∫ T

0

Eik(τ)Gkk(T − τ)dτ

The first expression is a Volterra integral equation of the second kind, for which
[Burton] is a clear introductory source. It is the same type of equation discussed
in Feller’s article on renewal theory [Feller2] and which was previously treated as
part of the theory of industrial replacement in [Lotka]. The equation is also pivotal
in later studies of population and economic growth, as more recent references from
chapter 2 of [Kohlas] indicate.

The verbal description of the equation and formula above are now given. For
the equation, “given that you start in k, the density of entering k at T is the
density of a first entry, plus the density of having entered k at a previous time τ
and subsequently entering at T , summed over all τ”. For the formula, “starting in
j, the density of arriving in k is the sum of the density of first arrival, plus that of
a previous first arrival followed by a subsequent arrival from k to k”.

These quantities can be used to express the state probabilities. That is, Pik(T ) is

the probability of being in k at T , given that you entered i at 0. We let Sk =
∑

j 6=k

Fkj



11

be the holding time distribution in state k. Then

(2.4) Pik(T ) =

∫ T

0

Gik(τ)[1− Sk(T − τ)]dτ,

Pkk(T ) = 1− Sk(T ) +

∫ T

0

Gkk(τ)[1− Sk(T − τ)]dτ.

For the first formula, a description in words reads: “the probability of being in k
equals the density of arriving in k, and subsequently not leaving k, integrated up
to the present time”.

An alternative formulation of state probabilities, using only the Eij functions
can be derived from the above equations. In fact,

(2.5) Pik(T ) =

∫ T

0

Eik(τ)Pkk(T − τ)dτ,

Pkk(T ) = 1− Sk(T ) +

∫ T

0

Ekk(τ)Pkk(T − τ)dτ.

Again, the advantages to the approach indicated by the above formulas can be
summarized:

(1) The method encompasses both Markov and semi-Markov chains,
(2) Eik, i 6= k can be found by SHARPE,
(3) after which only one integral equation need be solved to determine a prob-

ability function,
(4) then Feller’s method of solving the renewal equation can be applied;
(5) the approach is well adapted for hierarchical modeling as will be seen.

3. The SHARPE Solution Method

Acyclic chains (Markov and semi-Markov)

The method adopted by SHARPE in this case is equivalent to an analysis of
paths from “initial states” to absorbing states. An initial state can be defined as
one that has a non-zero probability at time 0. That is, if i is the state, then the

vector ~P0 has a positive i-th component. We discuss this by examining each path
separately, as in a “depth-first search”, whereas SHARPE is actually programmed
to compute probabilities at states as they are successively reached in a “breadth-
first” search. The difference is one of form.

For the system to traverse a particular path in the (acyclic, directed) graph
representing the semi-Markov process is an event, which is disjoint from the other
events corresponding to the other paths. Therefore, to get the distribution of an
absorbing state, the traversal distributions of all paths leading from some initial
state must be added, weighted by their probabilities of occurrence. We must find
a traversal distribution from a given path, and a probability. Suppose the initial
state is i0, the final state is im. The path of concern σ can be written i0, i1, . . . , im.
We define recursively

(3.1) Bm(T ) = 1, Bj(T ) =

∫ T

0

F ′
ij ,ij+1

(t)Bj+1(T − t)dt,
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where j = 0, . . . ,m − 1. Then define Dσ = B0(T ). The derivative and the con-
volutions are performed “symbolically” by SHARPE, within the class of functions
Exp.

Let ρσ = ρi0,i1 · ρi1,i2 · · · ρim−1,im · Pi0(0). Here,

ρij ,ij+1
=

∫ ∞

0

F ′
ij ,ij+1

(t)dt, j = 0, . . . ,m− 1.

Then Pk(T ) =
∑

σ

ρσDσ(T ), where σ runs over all paths ending in k.

Cyclic chains (Markov)

In the (cyclic) Markov case, SHARPE uses both matrix analysis and estimation
in the transform domain to find the distribution of an absorbing state. There is no
reason why this method could not be used to give probability functions at transient
states, but at present, SHARPE does not do this. Such information may be useful,
however, as the example of a phased mission points up. Here the “mission” proceeds
in two phases, the second commencing at time T1. The models for the two phases
are the same, but certain failure and reconfiguration distributions have changed
due to a maintenance action ([Baker], personal communication). The initial state
probabilities for the model of the second phase are given by the state probabilities of
the first phase at time T1. We indicate how to use SHARPE to find this information,
however.

Recalling the infinitesimal generator matrix Q of section 1, it is clear from (1.10)
that its eigenvalues and their multiplicities are of great importance in finding the
probability functions. Any real matrix has a Schur decomposition

(3.2) Q = UHUT ,

where UT denotes the transpose of U , U is orthogonal (UUT = I). The n × n
matrix H is to have a nearly upper triangular form. That is, it is block upper
triangular, with diagonal blocks either of size 1× 1 or 2× 2. In particular, H is an
upper Hessenberg matrix: it is upper triangular except for possible non-zero entries
on the diagonal i = j + 1 (just below the main diagonal). Then the eigenvalues
of H, and hence of Q are the 1 × 1 real scalars and the complex-conjugate pairs
arising from the 2× 2 blocks. In order to take Q to this form, one may first find

G = LkLk−1 · · ·L0 ·Q · L0 · · ·Lk,

where G is in upper Hessenberg form, and Li is a “Householder matrix”. A House-
holder matrix represents a reflection through an (n − 1)-dimensional hyperplane
orthogonal to a certain vector ~vi. The details of this algorithm can be found in
[Golub & Van Loan] p. 222. It is due to Wilkinson who exposited it in his book
[Wilkinson]. Now G has a Q-R decomposition G = WR, where W is orthogonal
(essentially a product of rotations) and R is upper triangular. Another algorithm
implicitly finds G′ = RW . Using G′ as the new Hessenberg matrix G, we repeat
this process until the real Schur form is attained. Then the eigenvalues (which have
not changed through any of these transformations) may be read off.
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Next, SHARPE must determine the coefficients aijk of formula (1.10). By trans-
forming the differential equation in formula A1 of section 1, one obtains

sP (s)− P0 = P (s)Q,

or P (s · I −Q) = P0. Each P i(s) is of the form

m
∑

j=1

pi−1
∑

k=0

βijk

(s+ λj)k
;

determining the βijk is equivalent to finding aijk. But for a particular choice of s,

say ζ1, we get P (ζ1)T = P0, T = (ζ1I −Q). Thus we have n equations for the n2

unknowns {βijk}. Similarly, setting s = ζ2, . . . , ζn, for suitably chosen values, will
give enough equations to determine the coefficients we seek.

We now indicate how to use the SHARPE approach to determine transient state
probabilities. This will work for any Markov chain; if general (semi-Markov) tran-
sitions are allowed, the technique is only good for states (if any) that satisfy the
following. “If all transitions out of the state of interest are removed, that which
remains is a chain that is

(1) pure Markov, possibly with cycles, or
(2) acyclic semi-Markov.”

Call this condition Condition Q. It is rather remarkable that SHARPE, with some
additional calculation, can treat certain semi-Markov chains with cycles. The com-
putational techniques involved are amply illustrated by the examples at the end of
the paper. Now the method is described in general terms.

Given a (non-absorbing) state r, we are interested in Pr(T ) as a function. If
there is a single initial state j, Pj(0) = 1, this is the same as Pjr(T ). But using
SHARPE, for any state i 6= r, one may find Eir(T ). This is done by describing
the chain to SHARPE, giving the transition rates and distributions as usual, but
omitting any transitions out of r. This makes r into an absorbing state r′. We
assign in the input to SHARPE, Pi(0) = 1, and all other initial state probabilities
zero. Given that Condition Q holds, SHARPE can find the cumulative distribution
function Hr′(t) of arrival into r′, as well as the overall probability ρr′ of reaching
r′. Consider

Lir′(T ) = Hr′(T ) · ρr′ .

This is the unconditional distribution of entering r′. The derivative of Lir′ with
respect to time is just Eir(T ), since arrival and first arrival are identical for an
absorbing state. Thus SHARPE has found the functions Eir, i 6= r. These are then
used by means of the second part of (2.2) to find Err(T ). The second part of (2.5)
is an integral equation for the unknown function Prr. Once this has been solved,
we need only perform the convolution integration of (2.5), first equation, to obtain
Pjr which was the desired state probability function.

4. Decomposition Methods

Given a complex failure-repair-reconfiguration system, it is tempting to decom-
pose it into independent subsystems, or ones that are nearly independent. Inde-
pendence allows one to compute the probability of being in a given state (for each
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subsystem) by using the product formula. Since the computational cost of ana-
lyzing a system model increases geometrically with size, significant savings can be
had if the system is decomposable in this manner. As an example, consider two
triplex systems attached to a voter as shown in Figure 4-1. are both required to
be functioning for system viability. In each subsystem, Sa, Sb, the failure of two
components causes a triplex failure. If the component failure probabilities are pa
and pb, we have

(4.1) pS = pSa
+ pSb

− pSa
· pSb

,

where

pSa
= 3 · p2a(1− pa) + p3a,

pSb
= 3 · p2b(1− pb) + p3b .

Thus we see that in forming system failure probability, we certainly do not need to
consider separately all failure modes, such as “one unit in Sa has failed, together
with 2 units in Sb”.

Independent Voted Triplexes

S1 S2

a1 a2 a3 b1 b2 b3

vv

Figure 4-1

Dependent Processor-Node System

a1 a2 a3

b1 b2 b3

v

Figure 4-2

On the other hand, in Figure 4-2. the same failure conditions apply for Sa

and Sb, but their “failures” are not independent events. We say that unit B1 is
“isolated” when a1 has failed (the voter has no access to it). To be isolated is as
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bad as failed. Thus when a1 and b2 are failed, the system has failed, since the voter
can see neither b1 nor b2. The “failure conditions” need to be explicitly analyzed.
If we take the simplest Markov chain representation of Sa and Sb, we get Figure
4-3. At a given time t we again have

(4.3) PSa
(t) = 3 · P 2

a (t)− 2 · P 3
a (t)

for the failure probability. But it is not clear how to obtain PS(t) for the combined
system. Figure 4-4a gives an “equivalent” Markov chain; its failure probability
function is the same as for Figure 4-3. The corresponding chain for subsystem Sb is
shown in Figure 4-4b. In the “combined” model (not shown), certainly when one of
the subsystems is in a failed state, the system is failed. Thus (Fa, ∗) and (∗, Fb) give
system failure, where ∗ is any non-failed state of the appropriate subsystem. But
also for example (011, ioi) is a failed state. Due to independence of unit failures,
this state’s probability is P011 · Pioi = Pa(t) · Pb(t). Examination gives 6 of these
states so we finally get

(4.4) PS(t) = PSa
(t) · (1− PSb

(t)) + (1− PSa
(t)) · PSb

+ 6 · Pa(t) · Pb(t).

Voted Triplex System

3λ 2λ
F

Figure 4-3

( )

011

111

101 110

( )b

oii

iii

ioi iio

Elaborated Triplex Models

a
a

a

a a

a

a

b
b

b

b b

b

Fa Fb

λ
λ

λ
λ

λ

λ

2λ

2λ

2λ2λ

2λ

2λ

Figure 4-4

Therefore, the combined model is the Cartesian product Sa × Sb with certain
transitions modified. For example, the definition of Cartesian product implies that
(101, ioi) is a state with a transition of rate 2λa to (Fa, ioi) and a transition of rate
2λb to (101, Fb). Next, all “combined states” satisfying the failure condition are
made absorbing. Thus the transitions of rate 2λa from (110, ioi) to (Fa, ioi) and
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rate 2λb from (110, ioi) to (110, Fb) are deleted. This reliability problem, of coupled
nodes and sensors, can be solved in two ways: firstly by forming and solving the
combined Markov model in the manner we have just indicated, and secondly by
solving each of the two models Sa and Sb, not only for their failure probability
distributions, but also for their state probability functions. These functions are
then combined in some way, similar to (4.4), to give the distribution of the entire
system S.

The situation becomes more involved when the components admit of repair. The
Markov model for system Sa is then shown in Figure 4-5, and the model for Sb is
similar. At time T , if we are in a failed state of Sa or of Sb, the system S has
certainly failed. If we are in a state such as 011 in Sa and ioi in Sb, the system is
failed as well. But we may well be in an “up” state, such as 111 in Sa and iii in Sb

and still have to consider that we are failed. This is because at some previous time
t < T , we may have been in 011 and ioi simultaneously which would have brought
down the system.

Repairable Triplex Model
Subsystem

111

011 101 110

a

Fa

λa

λa

λa

µa

µa

µa

2λa
2λa

2λa

Figure 4-5

The combined model, called m accurately reflects this state of affairs: the state
(011, ioi) has been made absorbing, so the transitions (named after their numerical
rate):

µa : (011, ioi) → (111, ioi)

µb : (011, ioi) → (111, ioi)(4.6)

do not exist.
The problem is how to compute the failure contribution of combined states such

as (011, ioi) without solving the combined model m. This is analogous to the
non-repair situation, with the difference that we cannot simply use the expression
P011(T ) · Pioi(T ) as we did there. The expression we seek could be expressed in
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words as “the probability that at some time prior to T , the Sa state was 011 and
the Sb state was ioi”.

In the semi-Markov case it is not feasible to find these “combined state” proba-
bilities by using a Cartesian product model. If M and N are semi-Markov chains,
the Cartesian product M×N will generally not have the semi-Markov property. For
example, Figure 4-6 depicts a two state Markov chain and a two state semi-Markov
chain with hypoexponential distribution C(t) = 1 − 2 · e−t + e−2t. The combined
model (Cartesian product) is then shown with distributions indicated. Since C(t)
is not exponential and hence not memoryless, the density function of the transition
(b, x) → (b, y) depends not only on the “local” time spent in state (b, x), but also on
the entry time into (b, x), or the time spent in (a, x). This violates the semi-Markov
property.

Elementary Models Combined Models

C(t)

C(t)

a b

x y
λ

λλ

a, x b, x

a, y b, y

Figure 4-6

For this reason we do not work explicitly with the “combined model”. But we
still consider ordered pairs of states, and say, informally, “the system is in state
(A,X), where A is a state of M , and X is a state of N”. We a consider failure
condition given by a pair (B, Y ), B ∈ M , Y ∈ N . Let ZAB,XY (T ) = the probability
that M has entered state B while N was in state Y , or N entered state Y while
M was in state B, at a time t, 0 < t < T , given that M was in A at 0, and N
was in X at 0. It should be helpful to look ahead to Figure 6-1 which gives a good
illustration of this situation.

In case A 6= B or X 6= Y , one can also interpret ZAB,XY (T ) as follows: the
probability, given that M started in A and N started in X, that M has been in B
simultaneous with N being in Y . The quantities are determined by means of two
fundamental equations. The first is:
(4.7)

ZBB,Y Y (T ) =

∫ T

0

(GBB(τ) · PY Y (τ) + PBB(τ) ·GY Y (τ))[1− ZBB,Y Y (T − τ)]dτ.

In words, the right-hand expression is the integral over τ of the density of entering
into the “state” (B, Y ), and subsequently never arriving again (to avoid counting
arrivals twice). This is similar to a Chapman-Kolmogorov forward equation in that
we integrate over densities of the last jump into (B, Y ). The quantities GBB , PBB ,
GY Y , PY Y are found as in section 2 from the separate models M and N . Then
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(4.7) is an integral equation to be solved. Note that if we use a Laplace transform
method, the expression GBB(τ) · PY Y (τ) must be multiplied in the time domain,
and then transformed, or else ḠBB(s) and P̄Y Y (s) convolved before proceeding
further. This is illustrated in the subsequent examples. Given ZBB,Y Y , one can
find ZAB,XY by integrations:
(4.8)

ZAB,XY (T ) =

∫ T

0

(GAB(τ) · PXY (τ) + PAB(τ) ·GXY (τ))[1− ZBB,Y Y (T − τ)]dτ.

The verbal interpretation of the right-hand expression is left to the reader.

5. Distributions from Mean and Variance

Modern fault-tolerant computers, as used in high-reliability applications such as
aerospace and nuclear plant control, employ architectural features beyond simple
majority voting of independent processors. Instead, faulty components may be
switched off, and spares activated; the system is changed upon detection of a fault.
A simple system with such dynamic reconfiguration is shown in Figure 5-1. This
depicts the triplex degradable to a simplex mentioned in section 1. Practice has
generally borne out the constant failure rate assumption for electronic components
during their active life span. But the “reconfiguration distribution” ω(t) has been
observed not to be exponential, as in [Finelli]. This transition includes the time
necessary for the system to detect the presence of single fault, isolate the two
components (one good and one bad), and remove them from service.

Reconfigurable Triplex

1 2 3

4 5

3λ 2λ

ω

λ

Figure 5-1

It has been shown in [Butler & White] that giving the mean M and variance V
of ω(t) is sufficient to determine PS(T ) to within a few percent, assuming that M is
much smaller than the reciprocal of the largest failure rate in the system S. Here,
T is the mission time. That is, the system is assumed to fail slowly and reconfigure
quickly.

To check such reliability results, obtained by the SURE program package, one
might use SHARPE on the same example. To do so would necessitate presenting
ω(t) in exponomial form. Our goal in the present section is simply to give a way
of determining ω(t) explicitly, knowing that it is a distribution with mean M and
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variance V . We utilize the method of Cox from his classic paper [Cox]. Three cases
exhaust the possibilities.

Case 1. Suppose M2 = V . Then take ω(t) = 1− e−λt, where λ = 1/M .

k stages

kλkλkλkλ γ

Figure 5-2

Case 2. If M2 > V , let k = [M2/V ] be the greatest integer less than M2/V .
Consider the linear chain in Figure 5-2, consisting of k stages with rate kλ and
a final stage of rate γ. Since the random variable “time to failure” is the sum of
the independent transition times of the stages, the mean and variance are additive
(respect the summation). See [Trivedi], p. 192. Thus

M = k

(

1

kλ

)

+
1

γ
=

1

λ
+

1

γ
,

V = k ·
1

k2λ2
+

1

λ2
=

1

kλ2
+

1

γ2
.(5.1)

From this one obtains the formula

(5.2)
1

λ
=

M −

√

M2 −

(

1 +
1

k

)

(M2 − V )

(

1 +
1

k

) .

The practical way to get ω(t) in closed form is to find k, λ, γ and enter a SHARPE
file for the linear chain. SHARPE will then find the desired distribution ω(t). Figure
5-3 shows the input and output formats. In a hierarchical fashion, SHARPE allows
the cumulative distribution function of this chain to be used in a “higher” system,
eliminating the need ever to write the exponomial form of ω(t) explicitly.

A complete explanation of SHARPE input and output formats should be found
in [Sahner & Trivedi1]. Certain symbolic variable names such as “lambda” are
bound to a numerical value. the system is described by type (markov) and given
a name (linear). The states and transitions, with rates, are given in the following
lines; after an “end”, state 0 is assigned initial probability 1. Then the cumulative
distribution function (cdf) is requested of SHARPE. The cdf then appears in the
output, using mantissa and exponent notation to describe floating point numbers,
and “exp” to denote the exponential function. Hence the meaning of the first line
of the output is 8.5749 × 10−2t3e1.6668t. Finally the mean and variance of the cdf
are given.

Case 3. If M2 < V , we take ω(t) to be hyperexponential with distribution

(5.3) ω(t) = 1− pe−µt − qe−λt,
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bind
lambda .4167
gamma .16667
end
markov linear

0 1 4*lambda

1 2 4*lambda

2 3 4*lambda

3 4 4*lambda
4 5 gamma
end
0 1.
end

cdf(linear)
end
CDF for system linear:

8.5749e-02 t( 3) exp(-1.6668e+00 t)

+ 3.2582e-01 t( 2) exp(-1.6668e+00 t)

+ 6.1957e-01 t( 1) exp(-1.6668e+00 t)

+ 1.0000e+00 t( 0) exp( 0.0000e+00 t)

- 1.5241e+00 t( 0) exp(-1.6667e-01 t)

+ 5.2412e-01 t( 0) exp(-1.6668e+00 t)

mean: 8.3997e+00
variance: 3.7438e+01

Figure 5-3

where p+ q = 1. According to [Trivedi], p. 212,

M =
p

µ
+

q

λ

V =
2p

µ2
+

2q

λ2
−M2.(5.4)

An effective iterative procedure to find p, q, µ and λ is to set

p = q = 5,

λ = 1.1/M,

µ = 1/

(

2M −
1

λ

)

.

Then let (Step 1) X = (M2+V )/2− q/λ2. This should approximate p/mu2. Then
set a new µ value (Step 2) equal to (M − q/λ)/X. Multiplying out the following
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expression shows (Step 4) that µλ(M − 1/λ)/(λ − µ) should equal p, so we take
this value as our new p. Finally, (Step 5), take q = 1 − p, and begin again at
(Step 1), repeating until the computed mean M and variance V are as close to
the given values as needed. This method is used in the next section to construct a
distribution.

6. Examples

As our first example we consider the two models I and II depicted in Figure
6-1. Model I is a transient-fault detection mechanism. In state A the mechanism is
functioning normally; in state B transient faults are incorrectly diagnosed as being
permanent. See [Lala] p. 20. In state C, a rare kind of error causes spurious signals
to be sent external parts of the system, causing an overall crash.

Model (Transient Error Detection)I

Model (Error Arrival and Recovery)II

A B C

α

β

λ

X Y

r

s

Figure 6-1

Model II represents the arrival of, and recovery from, transient faults over the
entire system. State X represents the active presence of a fault, and Y the disap-
pearance (absence), of faults. A similar model could be used to depict the error-
producing and benign phases of a single “intermittent” fault. Several other relia-
bility estimation packages besides SHARPE provide a capability for modeling the
arrival and detection of permanent, transient, and intermittent faults to the system.
See [Trivedi et al] and [Bavuso & Peterson].

We wish to consider the system as being up when the two “subsystems” I and II
are in states (A,X), (A, Y ), or (B, Y ) respectively. Whenever model I is in state
C, the system is down, but also whenever I is in state B at the same time as model
II is in state X, we must consider the system to have crashed, since a transient
fault is present but is incorrectly diagnosed (as permanent).
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Combined Model

5

1 2

34

αα β

λ

r

s

s

State Correspondence: 1 ∼ A,X 2 ∼ A, Y 3 ∼ B, Y 4 ∼ B,X 5 ∼ C, Y

Figure 6-2

The “combined model”, with states {1, . . . , 5} is shown in Figure 6-2. The cor-
respondence between the states of the combined model and the Cartesian product
ItimesII is indicated. The system failure states are absorbing. Note that there
is no state corresponding to (C,X): it is superfluous. Thus, to find the failure
probability at time T , one may take

(6.1) P4(T ) + P5(T ).

We are most interested in P4(T ), the probability of failure due to being in “state”
(B,X) at some time t ≤ T . For simplicity, suppose that the system starts life with
model I in state A and model II in state X. In the notation of section 4, we see
that

(6.2) P4(T ) = ZAB,XX(T ).

The total failure probability can also be obtained from the solution of the individual
models I and II. The remaining part to be considered is for state C to be entered
while model II is in state Y . Since C is absorbing, we know that the density of
entering C in model I is GAC = EAC , and we obtain

(6.3)

∫ T

0

EAC(τ) · PY (τ)dτ.
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Then adding expressions (6.2) and (6.3) gives the total failure probability, and
should be equal to the distribution obtained from considering the absorbing states
3 and 5 of the combined model.

In finding ZAB,XX(T ) as a closed-form exponomial function, we will need to
know GBB , PBB , GAB , PAB , GXX , and PXX , as indicated by equations (4.7) and
(4.8). We set coefficients in system I as

α = .3,

β = .5,

λ = .1.

We have dFBA(t) = .5e−.6t, and since there is only one transition into B, it also
follows that

EAB = dFAB = .3e−.3t.

Thus by (2.2),

(6.4) EBB(T ) =

∫ T

0

dFBA(τ) · EAB(T − τ)dτ.

Transforming according to the construction in [Feller2] gives

ĒBB(s) =
.15

(s+ .3)(s+ .6)
.

By (2.3), we know that

ḠBB(s) =
ĒBB

1− ĒBB

=
.15

s2 + .9s+ .03
.

Applying (2.3) also yields

ḠBB(s) = ĒAB + ĒAB · ḠBB =
.3s+ .18

s2 + .9s+ .03
.

Next, note that SB is the “reliability” function of state B, given that the state was
B at T = 0. Thus SB(t) = e−.6t, so by (2.4), we obtain

P̄AB(s) =
s+ .3

s2 + .9s+ .03
.

From model II, we require GXX and PXX . We take r = 2 and s = 3 which are
of course intended to have didactic value if not realism. In a manner similar to that
made in the computation for model I is obtained

ĒXX(s) =
6

(s+ 3)(s+ 2)
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(6.5) ḠXX(s) =
6

s2 + 5s
.

Then we have from (2.5),

P̄XX(s) =
1

s+ 2

(

1 +
6

s2 + 5s

)

=
s+ 3

s2 + 5s
.

Now define HB(t) = GBB(t)·PXX(t)+PBB(t)·GXX(t). We are in fact interested
in H̄B(s). To find this one must invert the transforms ḠBB(s), P̄XX(s) and so on,
perform multiplication and addition in the time domain, and then re-transform. A
numerical mathematics package is helpful here. By this means one obtains

H̄B(s) =

3
∑

i=1

uis
3−i

5
∑

i=1

vis
5−i

,

where

~u = [6.1500 34.6350 13.0995]

~v = [1.0000 11.8000 39.3700 26.9040 0.8859].

By (4.7) we have

Z̄BB,XX(s) = H̄B(s) ·

[

1

s
− Z̄BB,XX

]

.

Writing Z̄BB,XX in rational form as Ztop
B (s)/Zbot

B (s) yields

(6.5) Ztop
B = Htop

B , Zbot
B = s ·

(

Htop
B +Hbot

B

)

,

giving ZB =
6

∑

i=1

wis
6−i.

Here ~w = [1.0000 11.8000 45.5200 61.5390 13.9854 0.00].

Next we require HA(t) = GAB(t) · PXX(t) + PAB(t) ·GXX(t). Setting H̄A(s) =

Htop
A /Hbot

A , we find that

(6.6) Htop
A =

4
∑

i=1

uis
4−i, HA =

5
∑

i=1

vis
5−i,
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where

~u = [0.3000 2.8500 10.7010 13.8294]

~v = [1.0000 11.8000 39.3700 26.9040 0.8859].

Next we apply (4.8) and obtain using a similar notation

Ztop
A (s) = Htop

A

(

Zbot
B − s · Ztop

B

)

Zbot
A (s) = s ·Hbot

A Zbot
B .(6.7)

The numerator of Z̄A has degree 7 in s, and the denominator has degree 9, but
they have 5 roots in common. When the corresponding factors have been canceled,
what remains is

Z̄AB,XX(s) =

3
∑

i=1

ais
3−i

5
∑

i=1

bis
5−i

,

where

~a = [1.0000 6.9000 17.7300]

~b = [1.0000 9.2000 21.6000 5.3790 0.0000].

Now Z̄AB,XX(s) has distinct poles, and its partial fraction expansion corresponds
to the explicit exponomial form of ZAB,XX(t). Writing simply Z̄ and Z, we have

Z̄(s) =
4

∑

i=1

σi

s+ ρi
,

where we write ~σ and ~ρ in column form

~σ =

0.98884551031790

− 0.05848988319612

0.08378848442687

− 1.01414411154865

~ρ =

0

− 5.35172855471732

− 3.56645190997164

− 0.28181953531104
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Then of course Z(t) =

4
∑

i=1

σie
ρit.

Consider the SHARPE input file for the combined model, together with the
output information about node 4 in Figure 6-3. The distribution given is condi-
tional upon entering the absorbing state 4. When multiplied by the given entrance
probability, this gives the unconditional distribution, which is seen to agree with
ZAB,XX(t) to 9 digits of accuracy.

bind
alph .3
bet .5
lam .1
r 2.
s 3.
end
markov death
1 4 alph
1 2 r
2 1 s
2 3 alph
3 2 bet
3 4 s
3 5 lam
end
1 1.
end

cdf(death,4)
end

information about system death node 4

probability of entering node: 9.88845510e-01

conditional CDF for time of reaching this absorbing state

1.00000000e+00 t( 0) exp( 0.00000000e+00 t)

- 1.02558398e+00 t( 0) exp(-2.81819535e-01 t)

+ 8.47336450e-02 t( 0) exp(-3.56645191e+00 t)

- 5.91496676e-02 t( 0) exp(-5.35172855e+00 t)

mean: 3.62644539e+00
variance: 1.26658132e+01

Figure 6-3
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In the second example we depict several physical components and their failure
modes hierarchically. New features which were not present in the first example
include

(1) determination of a simple exponential form of a distribution given its mean
and variance,

(2) semi-Markov transitions,
(3) double poles in certain transition transforms,
(4) trigonometric solutions,
(5) neither coincident state is an initial state.

Duplex Node System

A B C

D E

2φ

φ

φ

c(t)

Figure 6-4

The example is a simplification of one aspect of the Integrated Airframe/Pro-
pul sion Control System Architecture (IAPSA). See [Cohen et al], p. 71. The
nodes (sensor-processor pairs) form a reconfigurable duplex. The failure rate of
each component is φ = .003, the resulting model is shown in Figure 6-4. Here C
and E are failure states, but as in the previous example we are concerned with
failure modes arising from coincident conditions on separate structural levels. The
transition function c(t) represents the distribution of system reconfiguration time.
It is the distribution of the random variable which is the sum of the times taken by
the duplex operating system to detect an error, isolate the faulty unit, and configure
to a simplex system. Experimentation with faults injected into the system has
yielded a mean time of .01 sec with a variance of .001 sec2. According to section
5, a hyper-exponomial distribution can be used for c(t). A SHARPE model, and
output realizing this are given in Figure 6-5, model “reconfig”.

The other hierarchical component of the system is a dual partition network to
which the nodes are attached. For simplicity we assume that either of two states
can hold: both partitions are functioning, or else one partition is functioning and
the other is undergoing repair (by configuring in a spare communication link).
The “degraded” network is fully functional when the “node” system I is in either
a stable duplex or simplex mode. However, the overall system cannot tolerate a
simultaneous partition repair and duplex-to-simplex reconfiguration. The two-state
model in Figure 6-6 illustrates the communication network, model II.
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bind
p .025
mu 7.
lam 150
end
markov reconfig
1 3 mu
2 3 lam
end
1 p
2 1.-p
end

cdf(reconfig)
end

CDF for system reconfig:

1.00000000e+00 t( 0) exp( 0.00000000e+00 t)

- 2.50000000e-02 t( 0) exp(-7.00000000e+00 t)

- 9.75000000e-01 t( 0) exp(-1.50000000e+02 t)

mean: 1.00714286e-02
variance: 1.00564116e-03

Figure 6-5

Repairable Network

X Y

α

b(t)

Figure 6-6

The partition failure rate is taken as a constant α = .01; due to a rather com-
plete understanding of the link repair mechanism, the repair distribution b(t) is
precisely known and is shown in Figure 6-7 (model net-repair). As indicated in the
SHARPE output, the mean and variance of repair are roughly .02 sec. and .0003
sec2 respectively. Note the factor of t in one of the terms of b(t).

In the notation of the last example we are concerned with the function ZAB,XY

(T ). This is the probability given that model I begins (at t = 0) in A and model II
begins in X, that before the time t = T model I has been in B simultaneous with
model II being in state Y . to this end one must find, for model I, the quantities
GBB , PBB, GAB , and PAB . For model II, one seeks GY Y , PY Y , GXY , and PXY .
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bind
p .02
mu 16.
lam 100
end
markov net-repair
1 2 mu
3 4 lam
4 5 lam
end
1 p
3 1.-p
end

cdf(net-repair)
end

CDF for system net-repair:

+ 1.00000000e+00 t( 0) exp( 0.00000000e+00 t)

- 9.80000000e+01 t( 1) exp(-1.00000000e+02 t)

- 9.80000000e-01 t( 0) exp(-1.00000000e+02 t)

- 2.00000000e-02 t( 0) exp(-1.60000000e+01 t)

mean: 2.08500000e-02
variance: 3.09527500e-04

Figure 6-7

Since B is not a recurrent state, we immediately obtain GBB = 0 and thus
PBB(T )) = 1−SB(T ) from (2.4), second equation. A calculation of the distributions
FBC and FBD yields

SB = FBC + FBD = 1− pe−(φ+µ)t − qe−(φ+λ)t.

Since GAB = EAB = dFAB = 2φe−2φt, we also have

PAB(T ) =

∫ T

0

2φe−2φτ [1− S(T − τ)] dτ.

We could also obtain PAB directly from the SHARPE model in Figure 6-8. The
quantity PAA is obviously e−2φt, and the SHARPE output gives the total failure
distribution, that is PAC +PAD, so PAB is 1 minus the sum of these two quantities.

Note how in the model, the semi-Markov transition is entered as a general dis-
tribution.
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bind
phi .003
pC .025
qC .975
mu 7.
lam 150.
end
semimark nodes

1 2 exp(2*phi)

2 3 exp(phi)
2 4 genN
1,0,0N
-pC,0,-muN
-qC,0,-lam
end
1 1.
end

cdf(nodes)
end

CDF for system nodes:

1.00000000e+00 t( 0) exp( 0.00000000e+00 t)

- 1.00006044e+00 t( 0) exp(-6.00000000e-03 t)

+ 2.14377590e-05 t( 0) exp(-7.00300000e+00 t)

+ 3.90007800e-05 t( 0) exp(-1.50003000e+02 t)

Figure 6-8

Converting to the s-domain, one has ḠAB(s) = 2φ/(s+ 2φ) and

P̄AB(s) =
2φ

s+ 2φ

[

p

s+ φ+ µ
+

q

s+ φ+ λ

]

.

Also, ḠY Y = ĒY Y + ĒY Y · ḠY Y from (2.3). In fact ḠY Y (s) = Ḡtop
Y Y /Ḡ

bot
Y Y where

Ḡtop
Y Y = 103×(0.00000320s2 + 0.09864000s+ 1.6000)

Ḡbot
Y Y = 105 × (0.00001000s4 + 0.0021601000s3 + 0.13202156800s2+

+ 1.60033360000s+ 0).

Next, from (2.3), second equation, we have

ḠXY (T ) = ĒXY (T ) +

∫ T

0

ĒXY (τ)GY Y (T − τ)dτ,
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so

ḠXY (s) =
.01

s+ .01

[

Ḡbot
Y Y + Ḡtop

Y Y

Ḡbot
Y Y

]

.

Next, from (2.4), letting Ls denote Laplace transform

P̄XY (s) = ḠXY (s) · Ls [1− b(t)] = ḠXY (x) ·

{

100V

(s+ 100)2
+

V

s+ 100
+

1− V

s+ 16

}

.

Here V = .98 as indicated in Figure 6-7 (model repair-net).
We begin computing the quantities that govern the coincident states. Firstly,

since GBB(t) = 0 we have from (4.7)

ZBB,Y Y (T ) =

∫ T

0

HBY (t) · [1− ZBB,Y Y (t)] dt,

where HBY (t) = PBB(t) ·GY Y (t). Solving yields

Z̄BB,Y Y =
H̄top

BY

s
(

H̄bot
BY + H̄top

BY

) .

After some simplification, one arrives at

Z̄BB,Y Y (s) =
10
∑

j=1

γj
s+ δj

,

~γ = 10−5× ~δ =

4.1360951 0

2.6757974− 1220.9445298i − 2.500031 + 0.001565i

2.6757974 + 1220.9445298i − 2.500031− 0.001565i

0.1175371 − 1.660038

− 6.5008554 − 1.500127

0.2214496− 11.7051909i − 1.070078 + 0.009775i

0.2214496 + 11.7051909i − 1.070078− 0.009775i

0.0217117 − 0.230031

− 3.5689825 − 0.070032

Manipulation of (4.8) yields the formulas

Z̄top
AB,XY = H̄top

AX ·
(

Z̄bot
BY − sZ̄top

BY

)

Z̄bot
AB,XY = H̄bot

AX · Z̄bot
BY .

Here HAX(t) = GAB(t)PXY (t) + PAB(t)GXY (t). We present HAX explicitly; its
value when s = 0 is of interest in that it represents the long-term or steady-state
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arrival density. Since in practice ZBB,Y Y (t) is very small, formula (4.8) shows
that the long-term probability of ending up in our coincident failure state (B, Y ),
instead of one of the other failure states, should be very close to this number which
is 3.09 × 10−4. Approximating our semi-Markov models by constant rate models
gives an estimate of 2.99 × 10−4 for this probability. We do not give ZAB,XY (t)
explicitly, since there are many terms. There is a strong temptation to simplify Z̄(s)
by canceling roots in numerator and denominator which seem equal or very close,
but this is a numerically delicate procedure. Instead we give HAX(t) explicitly from
the partial fraction expansion.

H̄AX(s) = H̄top
AX/H̄bot

AX =
10
∑

j=1

σj/(s+ ρj)

We obtain

~σ = 10−6× ~ρ =

− 0.000038 + 0.001930i − 2.500079 + 0.009899i

− 0.000038− 0.001930i − 2.500079− 0.009899i−0.389927−1.500030

− 0.214333 − 0.070030

− 0.596018 + 29.687109i − 1.000109 + 0.009899i

− 0.596018− 29.687109i − 1.000109− 0.009899i

− 0.074953 − 0.160062

1.854995 − 0.000060

0.016351 − 1.000063

Then writing

H̄top
AX =

8
∑

i=1

ais
i−1, H̄bot

AX =
10
∑

i=1

bis
i−1,

we get

~b = ~a =

0 1.0000e+ 00

1.2000e− 049.7306e+ 02

1.0796e− 013.8452e+ 05

3.8301e+ 017.9588e+ 07

6.7934e+ 039.2674e+ 09

6.2567e+ 056.0156e+ 11

2.7433e+ 071.9872e+ 13

4.2901e+ 082.6289e+ 14

1.9499e+ 091.0529e+ 15
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Letting σj = dj + eji, ρj = uj + vji, where i =
√

(−1), results in

HAX(t) = σ3e
ρ3t + σ6e

ρ6t + σ7e
ρ7t + σ8e

ρ8t + σ9e
ρ9t+

(7.7)

+ 2eu1t(d1 cos v1t+ e1 sin v1t) + 2eu4t(d4 cos v4t+ e4 sin v4t).

7. Conclusions

An important recent approach in reliability (and performance) theory is found
in the use of closed-form, analytical solutions. One advantage is that this approach
lends itself very well to models which are built up of smaller submodels in a hierar-
chical fashion. In this manner fault arrival behavior, system response, architectural
fault-tolerance features, and operating system features can be analyzed separately.
Each model yields an analytic expression, which can then be put together according
to formulas valid for the underlying stochastic process.

In practice, closed-form hierarchical solution of dependability problems has seen
limited use. One limitation is that in combining two models, new failure states may
have to be considered, which do not arise naturally from any particular failure state
of either constituent submodel. We have presented a method for resolving such a
situation. Using our formulas, it would seem feasible to incorporate the possibility
of failure arising from the interaction of different hierarchical levels into a solution
package such as SHARPE. The point of view we have presented emphasizes certain
density functions and distributions arising in the study of semi-Markov processes.
These quantities shed new light even on constant-rate processes, and are the key
to solving models by decomposition. Large classes of (cyclic) semi-Markov chains
can now be solved using the foundations laid in this article. The question of the
numerical robustness of the closed-form approach is still an open one. This does
not detract from the fact that “exponomial” methods are of great potential value
in solving the problems of reliability modeling, which remain of both practical and
theoretical interest.
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