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INTRODUCTION

We give a derivation of a formula conjectured by the electrical engineer S.D.
Bedrosian, for all the Fibonacci numbers, which is illustrative of several principles
of linear algebra and analysis, and a suitable classroom example. There are other
proofs, but the one presented here does not involve complex numbers (so roots of
unity do not appear), nor do the Fundamental Theorem of Algebra, resultants,
discriminants, or the Binet formula come in. The basic facts that are used are

i) the elementary expansion properties of the determinant;
ii) addition laws of the trigonometric functions;
iii) the fact that the determinant of a square matrix whose eigenvectors span
its domain equals the product of the matrix eigenvalues.

In fact, in point iii) it is enough to know that “determinant equals product of
eigenvalues” when the eigenvalues are distinct. Alternatively, one could use the
fact that the diagonalizable (or “non-derogatory”) property holds when the matrix
in question is symmetric. It is interesting to observe the trade-off of concepts, and
their level of depth, that occurs in different proofs of this Formula. This particular
proof may motivate a generalization involving special functions, other than sin and
cos. Relating algebraic properties of the function to to an integer matrix, might
yield some new transcendental identity. That is, the transcendental quantities
of interest would obey a recursion similar to the one that defines the Fibonacci
sequence.

BEDROSIAN’S FORMULA

For n = 1,2,..., let the usual Fibonacci numbers be given by f1 = 1, fo =
1, fs =2, fa = 3, fs = b and so forth based on the recursive formula
(2) fn+2:fn+1+fn n>1.

The identity in question is given in [1] or [2] as

r

(3) fo= H(3 + 2c0s¥)

k=1
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where r = L%J, using the “greatest integer” function. When n = 1, the product
in (3) is empty, which is interpreted as 1. The formula (3) was noticed in the
context of certain problems of electrical circuitry, and was proved in certain cases

in [1].
2
To prove (3), we take § = —ﬂ-, and form the set of r-vectors V, = {vp}, &k =
n
1,...,7 by
sin k6
sin 2k6
Vp = .
sin rkf

Let A,, B,,C, be r x r matrices defined by

[B,];; = Lif |[i—j| =1, =0 otherwise,
[C,];; = —1ifi=j=r =0 otherwise,
and
.Ar = Br + Cr~
Thus in particular we have
0 1 0 1
1 0 1 1 01
As = 1o 1| B= 101
1 -1 10

Note that the vector v; actually depends on n as well as k for its definition. Next
we wish to establish the following eigenvalue formulas:

(4) Ayv, =2coskf -vp forn=2r+1, Byvp =2coskf vy for n=2r.

These vector identities follow from considering the entries row by row. For the first
row, the result is the same as the identity sin 2k = 2 cos kf sin k#. For all rows f
with 1 < f < r, identities (4) are equivalent to the formula (valid for all angles 6),

sink(f —1)0 +sink(f +1)0 = 2coskfsinkf6,

which is proved by applying the addition law sin(a + b) = sinacosb + sinb cosa
to both terms on the left-hand side. Then we should establish the equality of the
last entries on both sides of (4). For the A, vy last row calculation, we need to see
that

2
S implies sink(r — 1)6 — sin krf = 2 cos k@ sin krf.
2r+ 1
We quickly verify this trigonometric identity by proving that sin k(r+41)6+sin krf =
kr2
0, which follows from sin(2km — a) = —sina, where a is taken as krf = 2 r+7r1.
r

(The angles kr# and k(r+1)8 add up to a multiple of 27.) Finally, we need the last
row calculation for Brvj. This amounts to sink(r — 1)f = 2 cos kf sin krf which is
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equivalent to sin k(r+ 1)0 = 0. This last identity follows immediately from the fact

27
that 6 = .
SR TN
Thus we have established formulas (4), so for both the case n is odd and n is
even, the numbers 2coskf k = 1,...,r constitute a set of eigenvalues for A, and

B, respectively. These values are all distinct, since the function cos(?) is strictly
decreasing on the domain (0, w). Thus in particular, the set of vectors V, is linearly
independent, and the matrices A, and B, are non-derogatory (their eigenvectors
form a basis of the domain R?).

If I 1s the r x r identity matrix

then let
A=A, +31I, B,=DB,+3I.

Using the same eigenvectors as before, it is clear that

{3+ 2coskb}, k=1,...r

constitutes a complete set of eigenvalues for A,, and for B,, in the odd and even
cases respectively. Hence,

r

T
detAr_H(3+2cos2r+1)
(5) k=1
det B —1:[(3+2c052k77r)
T 2r + 27
k=1
But we have
3 1 0 0 3 1 0 0
1 3 0 1 3 0
AT: ) BT: bl
31 31
0 1 2], 0 .. 1 3],

so that by the Laplace expansion, det B, =
3 1
1 3 1 3

—
DN —

rXr rXr
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det A, 4+ det B._;. Similarly we can obtain the recursive identity det A, = 2 -
det B._1 + det A._,. Taking as a starting point » = 1, so that det Ay = 2 and
det By = 3, these recursions immediately imply

f2r+1 =det A,
farq2 = det By,

which by the formulas (5) is equivalent to Bedrosian’s formula.

APPENDIX

We now give another proof of Bedrosian’s formula, which does not use any con-
cept or property of linear mapping, matrix, eigenvalue, or special function, but does
employ the solvability of a polynomial over the complex numbers C, root of unity,
and the Binet formula. For an elementary discussion of the Golden Ratio and the
formula of Binet for the Fibonacci sequence, one may wish to consult [3]. The
Binet identity is usually derived analytically in courses on number theory using a
generating function. To be sure, once this formula is conjectured it is straightfor-
ward to verify it; see for example [5], page 123. The present elegant proof of the
Bedrosian identity was found on the spot by a well-known but unnamed topologist
upon hearing the problem stated. The incidental derivation of Bedrosian’s formula
which is done in [4], in the course of proving results in enumerative combinatorics,
must contain the essence of his/her approach.

Consider the equation in one indeterminate p(z) = [c(z — ¢)]” — 1 = 0 where

1+5

. All n solutions come about from further solving c¢(z — ¢) = w*, k =

2
1,...,n where w is a primitive n-th root of unity. Thus the solutions are
p=we M 4e, k=1,...,n
5—1 .
Note that ¢! = \[2 soin fact ¢!+ ¢ = /b and —¢71 + ¢ = 1. Now
]Lf) = ¢(«) is a monic polynomial (the coefficient of the monomial 2" of highest

degree equals 1), so the product of all the roots of ¢(#) must equal (—1)" times the
constant term of ¢(z).
But the roots of ¢(z) are the same as the roots of p(z), and their product is

A= ﬁ Ty = ﬁ(wkc_l +¢).
k=1 k=1

Making use of the facts noted above, that x, = v/5, and if n is even, that rx =1,
we may write as valid for n > 0 that

A=+V5 I_I(azkc_1 + c)(w"—kc_1 +¢).
k=1
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The k-th factor in the above product can we computed using the complex repre-
sentation of roots of unity. In fact it equals

21 2w 2
(eZkTC_l + C)(el(n_k)TC_l + C) =c?+¢ 24 2cos il =3+ 2cos2mn.
n

Thus A is just \/5 times the product expression in Bedrosian’s formula.
There remains only to evaluate the constant term in ¢(z) directly. It is in fact

(_1)%”_61”:(_1)”(%;1) _(ﬁ2—1) |

We have that A equals (—1)" times this expression, so dividing both sides of this
equality by /5 gives

s () (5]

according to the Formula of Binet [3].
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